簡易檢索 / 詳目顯示

研究生: 楊長庭
Yang, Chang-Ting
論文名稱: 硒化銅及碲摻雜對銅銦鎵硒之緻密化行為及其特性影響之研究
Copper selenide and Te doping effects on the densification behavior and properties of Cu(In,Ga)Se2
指導教授: 向性一
Hsiang, Hsing-I
學位類別: 博士
Doctor
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 104
中文關鍵詞: 銅銦鎵硒直接升溫法硒化銅摻雜熱壓燒結
外文關鍵詞: CIGS, Te, CuSe2, CuSe, Ligand exchange, Liquid sintering, Hot-press sintering
相關次數: 點閱:94下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用不同溶劑系統三乙二醇 (triethylene glycol;TEG)、三乙烯四胺 (triethylenetetramine;TETA)及包覆劑 (polyvinylpyrrolidone;PVP),成功製備出具多種化學組成之CuSe2、CuSe與Cu2-xSe之晶體。實驗結果顯示當TETA添加量為低濃度0.007 -0.063 M時,Cu離子始終維持Cu2+,Se則還原至Se22-與Se2-離子,因此主要獲得之結晶相為CuSe2與CuSe。進一步提升TETA濃度至0.077 M後,因溶液中之還原性極劇增強,Cu2+離子會還原至Cu+,Se22-離子會還原成Se2-,因此可抑制中間產物Cu3Se2與Cu1.8Se晶體的生成,而獲得單一結晶相之Cu2-xSe晶體。此外,研究亦發現將krutaite CuSe2 (k-CuSe2)於空氣氣氛300℃持溫30分鐘熱處理後,其晶體結構會從原本的介穩態k-CuSe2相轉變為較穩定且具有超導特性之單一結晶相m-CuSe2。經UV-Vis-NIR分析可得m-CuSe2之能隙值為1.49 eV,CuSe之能隙值為1.98 eV,Cu2-xSe之能隙值為2.17 eV。
    以直接升溫法製備之CIGS奈米粉末,其表面會吸附十八烯胺(oleylamine)分子,在空氣氣氛下,溫度≥200℃熱處理30分鐘後,即會有二次相的生成及造成黃銅礦結構的崩解,因此其有機分子之移除實屬困難。利用間二甲苯 (m-xylene)或己硫醇 (1-hexanethiol)均可促進CIGS表面十八烯胺分子之移除,且於燒結過程中可以降低殘碳量。後以此CIGS奈米粉末為原料,摻雜不同比例之CuSe2、CuSe與碲(Te)晶體於CIGS中,並搭配熱壓燒結,探討其生成之液相對CIGS之顯微結構與緻密化之影響。實驗結果顯示僅透過熱壓燒結或摻雜CuSe, CuSe2, Te於CIGS中進行燒結,均無法有效使CIGS燒結緻密。透過摻雜可生成液相之5wt% CuSe, CuSe2於CIGS中並在熱壓燒結的搭配下,並無法如預期的提升其緻密性,此原因歸咎於在氬氣氣氛下以550 °C熱處理1小時後,CuSe與CuSe2均會相變成Cu2Se,造成液相生成溫度過高,導致液相燒結的效應失效。在摻雜5wt% Te並搭配熱壓燒結,終能打破奈米級CIGS中之嚴重凝聚現象,方能使CIGS達到緻密化及晶粒成長。經霍爾效應分析儀量測其緻密之CIGS均為p型半導體,載子濃度為7.4x1016 cm-3,載子遷移率可達26.4 cm2 V-1 s-1。利用可見光分光光譜儀量測其CIGS之能隙值為1.19-1.22 eV,均落在CIGS之理論範圍值內。

    Nearly dispersed marcasite CuSe2 (m-CuSe2), CuSe and Cu2-xSe crystals were successfully prepared using copper and selenium-triethylene glycol (TEG) solution thermal decomposition using triethylenetetramine (TETA) as the reducing agent and polyvinylpyrrolidone (PVP) as the capping agent. The obtained copper selenides are m-CuSe2, CuSe and Cu2-xSe for the samples added with TETA of 0.007 M, 0.063 M and 0.077 M, respectively. The measured energy gaps for m-CuSe2, CuSe and Cu2-xSe are 1.49 eV, 1.98 and 2.17 eV, respectively. Nearly dispersed CuIn0.7Ga0.3Se2 (CIGS) nanocrystals were successfully synthesized using heating-up process. However, it was observed that oleylamine adsorbed onto the CIGS surface was difficult to remove during sintering. Ligand-exchange with 1-hexanethiol or m-xylene can reduce the residual carbon during sintering. Moreover, the effects of copper selenides and tellurium doping on the densification and microstructure of CuIn0.7Ga0.3Se2 (CIGS) absorption layers were investigated by hot-press sintering process. It is difficult to densify CIGS just by doping Te or hot-press sintering. A dense CIGS ceramic can be obtained by doping 5wt% Te and hot-press sintering to eliminate the large pores originated from agglomeration of nanoparticles. The p-type chalcopyrite CIGS with the carrier concentration of 7.4 x 1016 cm-3 and mobility of 26.4 cm2 V-1 s-1 was obtained. UV–Vis–NIR spectroscopy measurements show that the energy gap values of the samples after doping Te and hot-press sintering are about 1.19-1.22 eV, which are close to the CIGS theoretical energy gap range.

    摘要 I Extended Abstract II 誌謝 VII 第一章 緒論 1 1-1 前言 1 1-2 研究目的與方法 2 第二章 文獻回顧 6 2-1 銅銦鎵硒(CIGS)薄膜太陽能電池之元件構造 6 2-2 銅銦鎵硒(Copper indium gallium diselenide) 8 2-2-1 銅銦鎵硒之簡介 8 2-2-2 銅銦鎵硒吸收層及其非真空製程 11 2-3 晶粒生成與成長機制 12 2-3-1 Ostwald ripening 14 2-3-2 Oriented attachment與Mesocrystals 15 2-4 銅銦鎵硒(CIGS)粉體之製備 18 2-4-1 固態反應法(Solid-state reaction) 18 2-4-2 熱分解法(Thermal decomposition method) 18 2-5 硒化銅(CuSe2、CuSe)晶體之製備 21 2-6 粉末燒結性 23 2-7燒結機制 25 第三章 實驗步驟與分析方法 35 3-1 藥品 35 3-2 銅銦鎵硒奈米粉體合成之實驗步驟 36 3-2-1 製備銅銦鎵之金屬錯合物(Metal complexes) 36 3-2-2 以直接升溫法製備銅銦鎵硒奈米粉體 36 3-3 以化學合成法製備不同化學組成之硒化銅粉體 37 3-4 商用Te粉末與不同化學組成之硒化銅粉體細化步驟 38 3-5 摻雜硒化銅與碲於銅銦鎵硒之燒結實驗步驟 38 3-5-1 真空氣氛燒結 39 3-6 實驗分析方法 40 3-6-1 粉末結晶相鑑定 (XRD) 40 3-6-2 粉末成分分析 (XRF) 41 3-6-3 燒結體密度量測 41 3-6-4 有機分子分析 (FTIR) 42 3-6-5 顯微結構分析 42 3-6-6 粉末價數分析 (XPS) 44 3-6-7 霍爾效應分析 (Hall effect) 44 3-6-8 能隙值量測 (UV-Vis-NIR) 44 第四章 結果與討論 46 4-1以化學還原法製備CuSe2、CuSe及Cu2-xSe粉體 46 4-1-1 CuSe2、CuSe、Cu2-xSe之結晶相鑑定 46 4-2-2 CuSe2、CuSe、Cu2-xSe之SEM、TEM顯微結構 52 4-2-3 CuSe2、CuSe、Cu2-xSe之價數與能隙值分析 58 4-2以直接升溫法製備Cu(In0.7Ga0.3)Se2奈米粉體 62 4-3利用不同溶劑系統對CIGS進行配體交換 63 4-3-1 CIGS之有機分子FTIR結構分析與結晶相鑑定 64 4-3-2 CIGS配體交換後之燒結顯微結構與能隙分析 70 4-4添加助燒結劑硒化銅與Te於Cu(In0.7Ga0.3)Se2進行加壓燒結 77 4-4-1利用化學還原法還原Te晶體 77 4-4-2添加硒化銅與Te於Cu(In0.7Ga0.3)Se2進行加壓燒結特性研究 81 4-5添加助燒結劑硒化銅與Te於Cu(In0.7Ga0.3)Se2進行熱壓燒結與其結晶相、顯微結構及電性之影響 83 第五章 結論 94 參考文獻 96 表目錄 Table 2.1 Effect of powder properties and experimental parameters using thermal decomposition process. [28, 35, 50] 20 Table 2.2 The impact index of initial sintering. [56] 29 Table 2.3 Related parameters of solid state sintering. [56] 30 Table 4.1 Summary of the copper selenide phase synthesized at different TETA concentrations (230℃/ 45 minutes). 49 Table 4.2 Lattice parameters and atomic positions parameters obtained from Rietveld refinement for marcasite CuSe2 after annealing at 300 °C for 30 min under air atmosphere. 52 Table 4.3 Chemical composition of the CuIn0.7Ga0.3Se2 synthesized using the heating up process. 63 Table 4.4 Chemical composition of the commercial Te after 24 h planetary ball milling and reduction by EG/ hydrazine system. 81 Table 4.5 Relative densities of the CIGS, CIGS+5wt% CuSe, CIGS+5wt% CuSe2, CIGS+2wt% Te and CIGS+5wt% Te after sintering at 550 ℃ for 1 h under 2 bar Ar atmosphere. 83 Table 4.6 Relative densities of the CIGS, CIGS+5wt% CuSe, CIGS+5wt% CuSe2, CIGS+2wt% Te and CIGS+5wt% Te after hot press sintering (100 MPa) at 550 ℃ for 1 h under 2 bar Ar atmosphere. 85 Table 4.7 Resistivity of CIGS, CIGS+2 wt% Te and CIGS+5 wt% Te by hot- press sintering at 550 ℃ and 100MPa for 1 h under 2 bar Ar atmosphere. 93 圖目錄 Fig. 1.1 Cross-sectional SEM micrographs of the film selenized at 530 °C for 30 min with Se vapor. [2] 3 Fig. 1.2 The tensile stress produced by the constrained sintering causes the film to produce pores or cracks. 4 Fig. 1.3 (a) Planar and (b) cross-sectional SEM micrographs of CIGS/Mo/glass layers after selenized at 550 ◦C for 15 min with Se evaporation temperature of 400 °C. [3] 4 Fig. 1.4 Shrinkage behavior of unconstrained and constrained films of ZnO and Glass. [4] 4 Fig. 2.1 Structure of CIGS thin film solar cells. 7 Fig. 2.2 The relationship between absorption coefficient and wavelength of different light absorbing materials. [6] 7 Fig. 2.3 Structure of (a) II-VI (zinc-blende) and (b) I-III-VI (chalcopyrite). [10, 11] 9 Fig. 2.4 Phase diagram of a Cu2Se-In2Se3 binary system. [7] 10 Fig. 2.5 Phase diagram of a Cu2Se-In2Se3-Ga2Se3 ternary system. [12] 10 Fig. 2.6 The relationship between time and saturation. [25] 14 Fig. 2.7 Ostwald ripening growth mechanism. [31] 16 Fig. 2.8 (a) Schematic of the oriented attachment process, (b) five primary crystallites forming a single crystal via oriented attachment and (c-e) the PbSe nanocrystals form an intermediate by oriented attachment. [33, 34] 17 Fig. 2.9 Crystallization of single crystals is progressively generated by ions (left) and the nanocrystallines are self-assembled into amorphous intermediates to form a single crystal (right). [35] 17 Fig. 2.10 Cu-Se phase diagram, where (I) Cu+L1, (II) α-Cu2-xSe, (III) α-Cu2-xSe+β-Cu2-xSe, (IV) β-Cu2-xSe+Cu3Se2, (V) β-Cu2-xSe+β-CuSe, (VI) Cu3Se2+α-CuSe, (VII) α-CuSe + CuSe2 and (VIII) L2+β-Cu2Se. [51] 22 Fig. 2.11 Schematic diagram of (a) soft agglomerate and (b) hard agglomerate. [57] 25 Fig. 2.12 Schematic representation of the sintering mechanisms for a system of two particles: (a) non-densifying and (b) densifying. [56] 28 Fig. 2.13 The stages of liquid phase sintering involving mixed powders which form a liquid during heating. [62] 31 Fig. 2.14 The stages of the liquid phase sintering and the microstructure development. [62] 32 Fig. 2.15 Schematic diagram of rearrangement and fragmentation of polycrystalline particle. [62] 33 Fig. 3.1 Experimental flow chart for the preparation of metal complex. 36 Fig. 3.2 Experimental flow chart of CuIn0.7Ga0.3Se2 crystallites synthesized using the heating up process. 37 Fig. 3.3 Experimental flow chart of Copper selenide crystallites synthesized using the chemical reduction process. 38 Fig. 3.4 Experimental flow chart for the preparation of CuIn0.7Ga0.3Se2 sintered bodies. 39 Fig. 4.1.1 X-ray diffraction pattern of the copper selenide synthesized at different TETA concentration (a) 0.007 M、(b) 0.014 M、(c) 0.0245 M之X-ray diffraction pattern. 47 Fig. 4.1.2 X-ray diffraction pattern of the copper selenide synthesized at different TETA concentration (a) 0.056 M, (b) 0.063 M, (c) 0.07 M, (d) 0.077 M. 48 Fig. 4.1.3 X-ray diffraction patterns of the CuSe2 transition synthesized from 0.007 M TETA at different annealing temperature (a) no annealing, (b) 250 °C-30min and 50 (c) 300 °C-30min. 50 Fig. 4.1.4 Rietveld refinement using X-ray diffraction data of the m-CuSe2 crystallite 51 synthesized from 0.007 M TETA and annealing at 300 °C for 30 min under air atmosphere. 51 Fig. 4.1.5 SEM images of m-CuSe2, CuSe, Cu2-xSe crystallites synthesized using different TETA concentrations (a) 0.007 M, (b) 0.007 M and annealing at 300 °C for 30 min, (c) 0.0245 M and (d) 0.077 M. 53 Fig. 4.1.6 (a) TEM bright-field image of m-CuSe2 crystallite synthesized from 0.007 M TETA, (b) electron diffraction pattern, (c) HRTEM image and (d) energy-dispersive spectrometry. 54 Fig. 4.1.7 (a) TEM bright-field image of m-CuSe2 crystallite synthesized from 0.007 M TETA and annealing at 300 °C for 30 min, (b) electron diffraction pattern, (c) HRTEM image and (d) energy-dispersive spectrometry. 55 Fig. 4.1.8 (a), (b) TEM bright-field image of CuSe crystallite synthesized from 56 0.0245 M TETA, (c) energy-dispersive spectrometry. 56 Fig. 4.1.9 (a) TEM bright-field image of Cu2-xSe crystallite synthesized from 0.077 M TETA, (b) electron diffraction pattern and (c) energy-dispersive spectrometry. 57 Fig. 4.1.10 XPS spectrum of CuSe2 powder synthesized by adding 0.007 M TETA. 58 (a) Cu、(b) Se 58 Fig. 4.1.11 XPS spectrum of CuSe powder synthesized by adding 0.0245 M TETA. 59 (a) Cu、(b) Se 59 Fig. 4.1.12 XPS spectrum of Cu2-xSe powder synthesized by adding 0.077 M TETA. 60 (a) Cu、(b) Se 60 Fig. 4.1.13 UV–Vis adsorption spectrum of CuSe2, CuSe and Cu2-xSe powders synthesized by adding (a) 0.007 M, (b) 0.007 M and annealing at 300 °C for 30 min, (c) 0.245 M and 0.077 M TETA respectively. 61 Fig.4.2 CuIn0.7Ga0.3Se2 nanocrystallite synthesized using the heating up process (a) X-ray diffraction pattern、(b) TEM morphology、(c) TEM diffraction pattern、 62 (d)HRTEM image. 62 Fig. 4.3.1 FT-IR spectra of pure (a) oleylamine, (b) 1-hexanethiol and (c) m-xylene. 64 Fig. 4.3.2 FT-IR spectra of (a) CIGS, (b)CIGS-1-hexanethiol and (c) CIGS- m-xylene. 65 Fig. 4.3.3 FT-IR spectra of CIGS, CIGS-1-hexanethiol and CIGS- m-xylene after heat treatment between 250-300℃-30min under nitrogen atmosphere. 66 Fig. 4.3.4 FT-IR spectra of CIGS, CIGS-1-hexanethiol and CIGS- m-xylene after heat treatment between 200-300℃-30min under air atmosphere. 67 Fig. 4.3.5 XRD patterns of the CIGS, CIGS-1-hexanethiol and CIGS- m-xylene under different heat treatment conditions and atmosphere (a) CIGS-m-xylene at 250℃-30min in nitrogen atmosphere, (b) CIGS-m-xylene at 300℃-30min in nitrogen atmosphere, (c) CIGS-1-hexanethiol at 250℃-30min in nitrogen atmosphere, (d) CIGS-1-hexanethiol at 300℃-30min in nitrogen atmosphere, (e) CIGS at 250℃-30min in air atmosphere, (f) CIGS at 300℃-30min in air atmosphere and (g) CIGS- m-xylene at 200℃-30min in air atmosphere. 68 Fig. 4.3.6 XRD patterns of the CIGS, CIGS-1-hexanethiol and CIGS- m-xylene sintered at 600 ℃ for 2 h under Se atmosphere. 69 Fig. 4.3.7 Raman scattering of CIGS, CIGS-1-hexanethiol and CIGS- m-xylene after sintering at 600℃ for 2 h under Se atmosphere. 69 Fig. 4.3.8 SEM images of (a) CIGS, (b) CIGS-1-hexanethiol and (c) CIGS- m-xylene after sintering at 600 ℃ for 2 h under Se atmosphere. 70 Fig. 4.3.9 Cross-sectional SEM images of (a) CIGS, (b) CIGS-1-hexanethiol and (c) CIGS- m-xylene sintered at 600 ℃ for 2 h under Se atmosphere. 71 Fig. 4.3.10 CIGS sintered at 600 ℃ for 2 h under Se atmosphere (a) TEM micrograph (b) TEM Diffraction pattern (c) HRTEM image and EDS results of (d) A region, (e) B region and (f) C region in Fig. 4.3.10 (a). 72 Fig. 4.3.11 TEM image and mapping of CIGS sintered at 600 ℃ for 2 h under Se atmosphere. 73 Fig. 4.3.12 CIGS-1-hexanethiol sintered at 600 ℃ for 2 h under Se atmosphere 74 (a) TEM micrograph (b) TEM Diffraction pattern (c) HRTEM image 74 Fig. 4.3.13 TEM micrograph and diffraction pattern of CIGS- m-xylene sintered at 600 ℃ for 2 h under Se atmosphere. 75 Fig. 4.3.14 The schematic diagram of ligand exchange. 76 Fig. 4.3.15 UV–Vis–NIR absorption spectrum of (a) CIGS-1-hexanethiol (b) CIGS-m-xylene sintered at 600 ℃ for 2 h under Se atmosphere. 76 Fig. 4.4.1 X-ray diffraction patterns of the (a) commercial Te (ALDRICH), (b) commercial Te (ACROS), (c) Te after 9 h planetary ball milling and (d) Te after 24 h planetary ball milling. 77 Fig. 4.4.2 SEM images of the (a), (b) commercial Te, (c) commercial Te after 9 h planetary ball milling and (d) commercial Te after 24 h planetary ball milling. 78 Fig. 4.4.3 X-ray diffraction patterns of the (a) commercial Te after 24 h planetary ball milling, (b) commercial Te after 24 h planetary ball milling and reduction by TEG/TETA system. (c) Commercial Te after 24 h planetary ball milling and reduction by EG/ hydrazine system. 79 Fig. 4.4.4 TEM micrographs (a), (b), (d), (e) and selected area diffraction patterns (c), (f) of commercial Te after 24 h planetary ball milling and reduction by EG/ hydrazine system. 80 Fig. 4.4.5 X-ray diffraction patterns of the (a) CIGS, (b) CIGS+5wt% CuSe, (c) CIGS+5wt% CuSe2 and (d) CIGS+5wt% Te and after sintering at 600 ℃ for 2 h under 2 bar Ar atmosphere. 81 Fig. 4.4.6 SEM images of the (a) CIGS, (b) CIGS+2wt% CuSe, (c) CIGS+5wt% CuSe, (d) CIGS+2wt% CuSe2, (e) CIGS+5wt% CuSe2, (f) CIGS+2wt% Te and (g) CIGS+5wt% Te after sintering at 600 ℃ for 2 h under 2 bar Ar atmosphere. 82 Fig. 4.5.1 X-ray diffraction patterns of the (a) CIGS, (b) CIGS+5wt% CuSe, (c) CIGS+5wt% CuSe2 and (d) CIGS+5wt% Te after hot press sintering at 550 ℃ and 100MPa for 1 h under 2 bar Ar atmosphere. 84 Fig. 4.5.2 SEM images of the (a) CIGS, (b) CIGS +5 wt% CuSe, (c) CIGS +5 wt% CuSe2, (d) CIGS+2 wt% Te and (e) CIGS+5 wt% Te after hot press sintering (50 MPa) at 550 ℃ for 1 h under 2 bar Ar atmosphere. 86 Fig. 4.5.3 SEM images of the (a) CIGS, (b) CIGS +5 wt% CuSe, (c) CIGS +5 wt% CuSe2, (d) CIGS+2 wt% Te and (e) CIGS+5 wt% Te after hot press sintering (100 MPa) at 550 ℃ for 1 h under 2 bar Ar atmosphere. 86 Fig. 4.5.4 X-ray diffraction patterns of the (a) CuSe, (b) CuSe2 after annealing at 550 °C for 1h under 2 bar Ar atmosphere. 88 Fig. 4.5.5 TEM micrographs (a), (b), (c) and selected area diffraction pattern (d) of CIGS after hot-press sintering at 550 ℃ and 100MPa for 1 h under 2 bar Ar atmosphere. 88 Fig. 4.5.6 TEM micrographs (a), (b), and selected area diffraction pattern (c) and HRTEM (d) of CIGS+2 wt % Te after hot- press sintering at 550 ℃ and 100MPa for 1 h under 2 bar Ar atmosphere. 89 Fig. 4.5.7. TEM micrographs (a), (b), and selected area diffraction pattern (c) and HRTEM (d) of CIGS+5 wt% Te after hot-press sintering at 550 ℃ and 100MPa for 1 h under 2 bar Ar atmosphere. 90 Fig. 4.5.8. Composition of CIGS, CIGS +2 wt% Te and CIGS +5 wt% Te by hot- press sintering at 550 ℃ and 100MPa for 1 h under 2 bar Ar atmosphere. 90 Fig. 4.5.9. Carrier concentration and Hall mobility of CIGS, CIGS+2 wt% Te and CIGS+5 wt% Te by hot- press sintering at 550 ℃ and 100MPa for 1 h under 2 bar Ar atmosphere. 92 Fig. 4.5.10. UV–Vis–NIR spectrum of (a) CIGS, (b) CIGS+2 wt % and (c) CIGS+5 wt % Te by hot- press sintering at 550 ℃ and 100MPa for 1 h under 2bar Ar atmosphere. 93

    1. P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, “Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%,” Phys. Status Solidi RRL 10. 8 (2016) 583–586.
    2. S.J. Ahn, C.W. Kim, J. H. Yun, J. Gwak, S. Jeong, B.H. Ryu, and K.H. Yoon, “CuInSe2 (CIS) thin film solar cells by direct coating and selenization of solution
    precursors,” J. Phys. Chem. C, 114 (2010) 8108-8113.
    3. S.J. Ahn, K.H. Kim, K.H. Yoon, “Nanoparticle derived Cu(In, Ga)Se2 absorber layer for thin film solar cells,” Colloids and Surfaces A: Physicochem. Eng. Aspects, 313-314 (2008) 171-174
    4. T.J. Garino and H.K. Bowen, “Kinetics of Constrained-Film Sintering,” J. Am. Ceram. Soc., 73 (1990) 251-257.
    5. Y. Hashimoto, Takuya Satoh, Shinichi Shimakawa, and T. Negami, “High efficiency CIGS solar cell on flexible stainless steel,” 3rd World Conference on Photovoltaic Enero Convemion, Japan (2003) 574-577.
    6. S. J. Fonash, “Solar Cell Device Physics,” Academic Press Inc., New York (1981)
    7. Nakada T, Mizutani M. “18% Efficiency Cd-Free Cu(In,Ga)Se2 thin-film solar cells fabricated using chemical bath deposition (CBD)-ZnS buffer layers,” Japanese Journal of Applied Physics: Part 2 Letters 41 (2002) L165–L167.
    8. Ennaoui A, Siebentritt S, Lux-Steiner M Ch, Riedl W, Karg F, ”High-efficiency Cd-free CIGSS thin-film solar cells with solution grown zinc compound buffer layers,” Solar Energy Materials and Solar Cells 67 (2001) 31–40.
    9. H. J. Möller, “Semiconductors for Solar Cells,” Artech House Inc., Boston (1993).
    10. S. Chen and X. G. Gong, “Physical Review B” 75 (2007) 205-209.
    11. Y. Hamakawa, “Thin Film Solar Cells,” 28-31 (2004)163-209.
    12. R. W. Birkmire and E. Eser, “Polycrystalline thin film solar cells: present status and future potential,” Annu. Rev. Mater. Sci. 27 (1997) 625-653.
    13. W.N. Shafarman, R. Klenk, and B.E. McCandless, “Device and material characterization of Cu(In,Ga)Se2 solar cells with increasing band gap,” J. Appl. Phys. 79 (1996) 7324-7328.
    14. Q. Guo, G M. Ford, R. Agrawal and H. W. Hillhouse, “Ink formulation and low-temperature incorporation of sodium to yield 12% efficient Cu(In,Ga)(S,Se)2 solar cells from sulfide nanocrystal inks,” Prog. Photovolt: Res. Appl. 21 (2013) 64–71.
    15. G.C. Park, H.D. Chung, C.D. Kim, H.R. Park, W.J. Jeong, J.U. Kim, H.B. Gu, K.S. Lee, “Photovoltaic characteristics of CuInS2/CdS solar cell by electron beam evaporation,”Sol. Energy Mater. Sol. Cells 49 (1997) 365-374.
    16. T. Yukawa, K. Kuwabara, K. Koumoto, “Electrodeposition of CuInS2 from aqueous solution (II) electrodeposition of CuInS2 film,” Thin Solid Films 286 (1996) 151-153.
    17. D. Guimard, N. Bodereau, J. Kurdi, J.F. Guillemoles, D. Lincot, P.P. Grand, M. Ben Farrah, S. Taunier, O. Kerrec, and P. Mogensen, MRS 2003 Spring Meeting Symposium Proceedings, San Francisco, USA, B6.9.
    18. B.J. Brown, and C.W. Bates, “Similarities in the chemical mechanisms of CuInSe2 and CdS thin film formation by chemical spray pyrolysis,” Thin Solid Films 188 (1990) 301-305.
    19. M. Kaelin, D. Rudmann, and A.N. Tiwari, “Low cost processing of CIGS thin film solar cells,” Solar Energy 77 (2004) 749-756.
    20. V.K. Kapur, A. Bansal, P. Le, I. Omar, “CIS and CIGS layers from selenized nanoparticle precursors,” Thin Solid Films 431 (2003) 53-56.
    21. T. Wada, Y. Matsuo, S. Nomura, Y. Nakamura, A. Miyamura, Y. Chiba, A. Yamada, and M. Konagai, “Fabrication of Cu(In,Ga)Se2 thin films by a combination of mechanochemical and screen-printing/sintering processes,” Phys. Stat. Sol. 203 (2006) 2593-2597.
    22. S.M. McLeod, C.J. Hages, N.J. Carter and R. Agrawal, “Synthesis and characterization of 15% efficient CIGSSe solar cells from nanoparticle inks,” Prog. Photovolt: Res. Appl. 23 (2015) 1550-1556.
    23. C. Suryanarayana, E. Ivanov, R. Noufi, M.A. Contreras, and J.J. Moore, “Synthesis and processing of a Cu-In-Ga-Se sputtering target,” Thin Solid Film 332 (1998) 340-344.
    24. T. Sugimoto, Adv. Colloid Interface Sci. 1987, 28, 65.M. Kaelin, D. Rudmann, and A.N. Tiwari, “Low cost processing of CIGS thin film solar cells,” Solar Energy 77 (2004) 749-756.
    25. V. K. LaMer, R. H. Dinegar, “Theory, production and mechanism of formation of monodispersed hydrosols,” J. Am. Chem. Soc. 72 (1950) 4847-4848.
    26. X. Peng, J. Wickham, A. P. Alivisatos, “Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “focusing” of size distributions,” J. Am. Chem. Soc. 120 (1998) 5343-5344.
    27. Z. A. Peng, X. Peng, “Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth,” J. Am. Chem. Soc. 124(13) (2002) 3343-53.
    28. J. Park, J. Joo, S. G. Kwon, Y. Jang, and T. Hyeon, Angrew. “Synthesis of monodisperse spherical nanocrystals,” Chem. Int. Ed. 46 (2007) 4630-4660.
    29. 游佩青,類均值條件下奈米θ-Al2O3微粒之晶粒成長現象觀察,國立成功大學資源工程研究所,博士論文,中華民國97年6月。
    30. P. W. Voorhees, “The theory of ostwald ripening,” J. Statistical Phys., Vol. 38 (1985) Nos. 1/2.
    31. I.M. Lifshitz, V.V. Slyozov, "The kinetics of precipitation from supersaturated solid solutions". J. Phys. and Chem. Solids, 19(1-2) (1961) 35–50.
    32. D. Fairhurst, and R. W. Lee, “Aggregation, agglomeration-how to avoid aggravation when formulating particulate suspensions,” Drug Delivery Tech., Vol. 8, No. 8 (2008).
    33. R. Lee Penn and Jillian F. Banfield, “Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: insights from nanocrystalline TiO2,” Am. Mineralog., 83 (1998) 1077-1082.
    34. R. L. Penn, J. F. Banfiled, Geochim. Cosmochim, “Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania,” Acta 63 (1999) 1549-1557.
    35. Y.-W. Jun, J.-S. Choi, and J. Cheon, “Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes,” Angew. Chem. Int. Ed. Enql. 45(21) (2006) 3414-3439.
    36. H. Cölfen, S. Mann, “Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures,” Angew.Chem. Int. Ed. Engl. 42(21) (2003) 2350-2365.
    37. T. Vossmeyer,G. Reck, L. Katsikas, E. T. K. Haupt, B. Schulz, H. Weller, “A “double-diamond superlattice” built up of Cd17S4(SCH2CH2OH)26 clusters,” Science 267 (1995) 1476-1479.
    38. W. P. Hsu, L. REnnquist, E. Matijevic, “Preparation and properties of monodispersed colloidal particles of lanthanide compounds. 2. Cerium (IV),” Langmuir 4 (1988) 31-37.
    39. S. Wohlrab, N. Pinna, M. Antonietti, H. CElfen, “Polymer-induced alignment of DL-alanime nanocrystals to crystalline mesostructures,” Chem. Eur. J. 11 (2005) 2903-2913.
    40. H. Cölfen, and M. Antonietti, “Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment,” Angew. Chem. Int. Ed. 44 (2005) 5576-5591.
    41. N. Yamamoto, S. Ishida, and H. Horinaka, “Solid state growth of CuInSe2 and CuInTe2,” Jpn. J. Appl. Phys. 28 (1989) 1780-83.
    42. T. Wada and H. Kinoshita, “Rapid exothermic synthesis of chalcopyrite-type CuInSe2,” J. Phys. Chem. Solids 66 (2005) 1987-89.
    43. T. Wada, Y. Matsuo, S. Nomura, Y. Nakamura, A. Miyamura, Y. Chiba, A. Yamada, and M. Konagai, "Fabrication of Cu(In,Ga)Se2 thin films by a combination of mechanochemical and screen-printing/sintering processes," Phys. Stat. Sol.(a) 203 (2006) 2593-97.
    44. S. Ahn, C. W. Kim, J. H. Yun, J. C. Lee, K. H. Yoon, "Effects of heat treatments on the properties of Cu(In,Ga)Se2 nanoparticles," Solar Energy Mater. & Solar Cells 91 (2007) 1836-1841.
    45. Y. A. Yang, H. M. Wu, K. R. Williams, and Y. C. Cao, “Synthesis of CdSe and CdTe nanocrystals without precursor injection,” Angew. Chem. 117(41) (2005) 6870-6873.
    46. C.B. Murray, D.J. Norris, and M.G. Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites,” J. Am Chem. Soc. 115 (1993) 8706-8715.
    47. Z. Deng, L. Cao, F. Tang, B. Zou, “A New Route to Zinc-Blende CdSe Nanocrystals: Mechanism and Synthesis,” J. Phys. Chem. B, 2005, 109(35), 16671-16675.
    48. M. T. Ng, C. B. Bootroyd, J. J. Vittal, “One-Pot Synthesis of New-Phase AgInSe2 Nanorods,” J. Am. Chem. Soc. 128(22) (2006) 7118-7119.
    49. Y.-H. A. Wang, C. Pan, N. Bao, A. Gupta, “Synthesis of ternary and quaternary CuInxGa1−xSe2 (0≤x≤1) semiconductor nanocrystals,” Solid State Sci. 11 (2009) 1961-1964.
    50. Q. Guo, S.J. Kim, M. Kar, W.N. Shafarman, R.W. Birkmire, E.A. Stach, R. Agrawal, H.W. Hillhouse, “Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells,” Nano Lett. 8 (2008) 2982-87.
    51. Glazov, V., Pashinkin, A. & Fedorov, V. Phase equilibria in the Cu-Se system. Inorganic Materials 36 (2000) 641-652.
    52. A. J. Martinolich, J. A. Kurzman, and J. R. Neilson, “Polymorph Selectivity of Superconducting CuSe2 Through Kinetic Control of Solid-State Metathesis,” J. Am. Chem. Soc. 137 (2015) 3827-3833.
    53. G. M. Singh, S. Bhan, “Phase equilibria and crystal chemical relations in copper-nickel-selenium system,” Prog. Crystal Growth and Charact. 20 (1990) 217-230.
    54. Z. Zainal, S. Nagalingam, and T. C. Loo, “Copper selenide thin films prepared using combination of chemical precipitation and dip coating method,” Materials Letters 59 (2005) 1391-1394.
    55. O. A. Tánori, M. C. Acosta-Enríquez, R. Ochoa-Landín, R. Iñiguez-Palomares, T. Mendívil-Reynoso, M. Flores-Acosta, S. J. Castillo, “Copper-selenide and copper-telluride composites powders sintetized by ionic exchange”chalcogenide letters 11 (2014) 13-19.
    56. M. N. Rahaman, “Ceramic Processing and Sintering,” New York (1995).
    57. 高濂、孫靜、劉陽橋,奈米粉體的分散及表面改性,化學工業出版社。
    58. W.H. Rhodes, “Agglomeration and particle size effects on mixing yttria stabilized zirconia,” J. Am. Ceram. Soc. 64 (1981) 19-22.
    59. J. D. Park, “Growth and electrical characterization of CuInSe2 prepared by the sintering method,” J. Korean Phys. Soc. 25 (1992) 536-540.
    60. N. Yamamoto, S. Ishida, and H. Hoinaka, “Solid State Growth of CuInSe2 and CuInTe2,” Jpn. J. Appl. Phys. 28 (1989) 1780-1783.
    61. I. Repins, S. Glynn, J. Duenow, T. J. Coutts, W. Metzger, and M. A. Contreras, “Required materials properties for high-efficiency CIGS modules,” NREL/CP-520-46235 (2009) 1-14.
    62. Randall M. German, “Liquid phase sintering,” New York (1985).
    63. W. X. Zhang, C. Wang, X. M. Zhang, Y. Xie and Y. T. Qian, ”Low temperature synthesis of nanocrystalline Mn3O4 by a solvothermal method, “ Solid State Ionics, 117 (1999) 331–335.
    64. Y. H. Zheng, Y. Cheng, Y. S. Wang, L. H. Zhou, F. Bao and C. Jia, “Metastable γ-MnS Hierarchical Architectures: Synthesis, Characterization, and Growth Mechanism, “ J. Phys. Chem. B 110 (2006) 8284–8288.
    65. B. Li, Y. Xie, J. X. Huang and Y. T. Qian, “Synthesis by a Solvothermal Route and Characterization of CuInSe2 Nanowhiskers and Nanoparticles, “Adv. Mater., 11(17) (1999) 1456–1459.
    66. R.D. Heyding and R.M. Murray, ‘‘The Crystal Structures of Cu1.8Se, Cu3Se2, α- and γCuSe, CuSe2, and CuSe2II,’’ Can. J. Chem., 54 (1976) 841-848.
    67. L. C. Wang, L. Y. Chen, T. Luo, K. Y. Bao and Y. T. Tian, ‘‘A facile method to the cube-like MnSe2 microcrystallines via a hydrothermal process,’’ Solid State Comm., 138 (2006) 72–75.
    68. S. Y. Zhang, C. X. Fang, Y. P. Tian, Y. P. Tian, K. R. Zhu, B. K. Jin, Y. H. Shen and J. X. Yang, ‘‘Synthesis and Characterization of Hexagonal CuSe Nanotubes by Templating against Trigonal Se Nanotubes,’’ Cryst. Growth Des. 6(12) (2006) 2809–2813.
    69. J. Zhu, Q. Li, L. Bai, Y. Sun, M. Zhou, Yi. Xie, ‘‘Metastable Tetragonal Cu2Se Hyperbranched Structures: Large-Scale Preparation and Tunable Electrical and Optical Response Regulated by Phase Conversion,’’ Chem. Eur. J., 18 (2012), 13213-13221.
    70. J. Tauc, R. Grigovici, and A. Vancu, ‘‘Optical Properties and Electronic Structure of Amorphous Germanium,’’ Phys. Status Solidi B., 15 (1966) 627-637.
    71. T. Liu, Z. Jin, J. Li, J. Wang, D. Wang, J. Lai and H. Du, “ Monodispersed octahedral-shaped pyrite CuSe2 particles by polyol solution chemical synthesis,” CrystEngComm. 15 (2013) 8903–8906.
    72. B. Pejova, I. Grozdanov, “Chemical deposition and characterization of Cu3Se2 and CuSe thin films,” Solid State Chem. 158 (2001) 49–54.
    73. V.M. GarcmHa, P.K. Nair, M.T.S. Nair, “Copper selenide thin films by chemical bath deposition,” Journal of Crystal Growth. 203 (1999) 113-124.
    74. S. Garrigues, M. Gallignani, and M. De la Guardia, “Simultaneous Determination of ortho-, meta- and para-Xylene by Flow Injection-Fourier Transform Infrared Spectroscopy,” Analyst. 117 (1992) 1849-1853.
    75. A.C. Ferrari, and J. Robertson, “Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon,” Phys. Rev. B., 64 (2001) 075414-075427.
    76. Y.M. Strzhemechny, P.E. Smith, S.T. Bradley, D.X. Liao, A.A. Rockett, K. Ramanathan, L.J. Brillson, “Near-surface electronic defects and morphology of CuIn1-xGaxSe2,” J. Vac. Sci. Tech. B 20 (2002) 2441-48.
    77. C.T. Yang, H.I. Hsiang, and J.H. Tu, “Copper selenide crystallites synthesized using the hot-injection process,” Adv. Powder Technol., 27 (2016) 959–963.
    78. G.D. Liang, L.P. Shen, X.L. Zhang, and G.Z. Zou, “One-Pot Synthesis of Dual-Stabilizer-Capped CdTe Nanocrystals with Efficient Near-Infrared Photoluminescence and Electrochemiluminescence,” Eur. J. Inorg. Chem., 25 (2011) 3726–3730.
    79. R.B. Shafizade, I.V. Ivanova, and M.M. Kazinets, “Electron diffraction study of phase transformations of the compound CuSe,” Thin Solid Films, 55 (1978) 211-220.
    80. R.M. Murray and R.D. Heyding, “The Copper-Selenium System at Temperatures to 850 K and Pressures to 50 kbar,” Can. J. Chem., 53 (1975) 878-887.
    81. A. Zevalkink, E.S. Toberer, T. Bleith, E.Flage-Larsen, G.J. Snyder, “Improved carrier concentration control in Zn-doped Ca5Al2Sb6,” J. Appl. Phys. 110 (2011) 013721-013725.
    82. I. Sanyal, K.K. Chattopadhyay, S. Chaudhuri, A.K. Pal, “Grain boundary scattering in CuInSe2 films,” J. Appl. Phys. 70 (1991) 841-845.

    下載圖示 校內:2022-08-01公開
    校外:2022-08-10公開
    QR CODE