| 研究生: |
楊長庭 Yang, Chang-Ting |
|---|---|
| 論文名稱: |
硒化銅及碲摻雜對銅銦鎵硒之緻密化行為及其特性影響之研究 Copper selenide and Te doping effects on the densification behavior and properties of Cu(In,Ga)Se2 |
| 指導教授: |
向性一
Hsiang, Hsing-I |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 銅銦鎵硒 、直接升溫法 、硒化銅 、碲 、摻雜 、熱壓燒結 |
| 外文關鍵詞: | CIGS, Te, CuSe2, CuSe, Ligand exchange, Liquid sintering, Hot-press sintering |
| 相關次數: | 點閱:94 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用不同溶劑系統三乙二醇 (triethylene glycol;TEG)、三乙烯四胺 (triethylenetetramine;TETA)及包覆劑 (polyvinylpyrrolidone;PVP),成功製備出具多種化學組成之CuSe2、CuSe與Cu2-xSe之晶體。實驗結果顯示當TETA添加量為低濃度0.007 -0.063 M時,Cu離子始終維持Cu2+,Se則還原至Se22-與Se2-離子,因此主要獲得之結晶相為CuSe2與CuSe。進一步提升TETA濃度至0.077 M後,因溶液中之還原性極劇增強,Cu2+離子會還原至Cu+,Se22-離子會還原成Se2-,因此可抑制中間產物Cu3Se2與Cu1.8Se晶體的生成,而獲得單一結晶相之Cu2-xSe晶體。此外,研究亦發現將krutaite CuSe2 (k-CuSe2)於空氣氣氛300℃持溫30分鐘熱處理後,其晶體結構會從原本的介穩態k-CuSe2相轉變為較穩定且具有超導特性之單一結晶相m-CuSe2。經UV-Vis-NIR分析可得m-CuSe2之能隙值為1.49 eV,CuSe之能隙值為1.98 eV,Cu2-xSe之能隙值為2.17 eV。
以直接升溫法製備之CIGS奈米粉末,其表面會吸附十八烯胺(oleylamine)分子,在空氣氣氛下,溫度≥200℃熱處理30分鐘後,即會有二次相的生成及造成黃銅礦結構的崩解,因此其有機分子之移除實屬困難。利用間二甲苯 (m-xylene)或己硫醇 (1-hexanethiol)均可促進CIGS表面十八烯胺分子之移除,且於燒結過程中可以降低殘碳量。後以此CIGS奈米粉末為原料,摻雜不同比例之CuSe2、CuSe與碲(Te)晶體於CIGS中,並搭配熱壓燒結,探討其生成之液相對CIGS之顯微結構與緻密化之影響。實驗結果顯示僅透過熱壓燒結或摻雜CuSe, CuSe2, Te於CIGS中進行燒結,均無法有效使CIGS燒結緻密。透過摻雜可生成液相之5wt% CuSe, CuSe2於CIGS中並在熱壓燒結的搭配下,並無法如預期的提升其緻密性,此原因歸咎於在氬氣氣氛下以550 °C熱處理1小時後,CuSe與CuSe2均會相變成Cu2Se,造成液相生成溫度過高,導致液相燒結的效應失效。在摻雜5wt% Te並搭配熱壓燒結,終能打破奈米級CIGS中之嚴重凝聚現象,方能使CIGS達到緻密化及晶粒成長。經霍爾效應分析儀量測其緻密之CIGS均為p型半導體,載子濃度為7.4x1016 cm-3,載子遷移率可達26.4 cm2 V-1 s-1。利用可見光分光光譜儀量測其CIGS之能隙值為1.19-1.22 eV,均落在CIGS之理論範圍值內。
Nearly dispersed marcasite CuSe2 (m-CuSe2), CuSe and Cu2-xSe crystals were successfully prepared using copper and selenium-triethylene glycol (TEG) solution thermal decomposition using triethylenetetramine (TETA) as the reducing agent and polyvinylpyrrolidone (PVP) as the capping agent. The obtained copper selenides are m-CuSe2, CuSe and Cu2-xSe for the samples added with TETA of 0.007 M, 0.063 M and 0.077 M, respectively. The measured energy gaps for m-CuSe2, CuSe and Cu2-xSe are 1.49 eV, 1.98 and 2.17 eV, respectively. Nearly dispersed CuIn0.7Ga0.3Se2 (CIGS) nanocrystals were successfully synthesized using heating-up process. However, it was observed that oleylamine adsorbed onto the CIGS surface was difficult to remove during sintering. Ligand-exchange with 1-hexanethiol or m-xylene can reduce the residual carbon during sintering. Moreover, the effects of copper selenides and tellurium doping on the densification and microstructure of CuIn0.7Ga0.3Se2 (CIGS) absorption layers were investigated by hot-press sintering process. It is difficult to densify CIGS just by doping Te or hot-press sintering. A dense CIGS ceramic can be obtained by doping 5wt% Te and hot-press sintering to eliminate the large pores originated from agglomeration of nanoparticles. The p-type chalcopyrite CIGS with the carrier concentration of 7.4 x 1016 cm-3 and mobility of 26.4 cm2 V-1 s-1 was obtained. UV–Vis–NIR spectroscopy measurements show that the energy gap values of the samples after doping Te and hot-press sintering are about 1.19-1.22 eV, which are close to the CIGS theoretical energy gap range.
1. P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte, M. Powalla, “Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6%,” Phys. Status Solidi RRL 10. 8 (2016) 583–586.
2. S.J. Ahn, C.W. Kim, J. H. Yun, J. Gwak, S. Jeong, B.H. Ryu, and K.H. Yoon, “CuInSe2 (CIS) thin film solar cells by direct coating and selenization of solution
precursors,” J. Phys. Chem. C, 114 (2010) 8108-8113.
3. S.J. Ahn, K.H. Kim, K.H. Yoon, “Nanoparticle derived Cu(In, Ga)Se2 absorber layer for thin film solar cells,” Colloids and Surfaces A: Physicochem. Eng. Aspects, 313-314 (2008) 171-174
4. T.J. Garino and H.K. Bowen, “Kinetics of Constrained-Film Sintering,” J. Am. Ceram. Soc., 73 (1990) 251-257.
5. Y. Hashimoto, Takuya Satoh, Shinichi Shimakawa, and T. Negami, “High efficiency CIGS solar cell on flexible stainless steel,” 3rd World Conference on Photovoltaic Enero Convemion, Japan (2003) 574-577.
6. S. J. Fonash, “Solar Cell Device Physics,” Academic Press Inc., New York (1981)
7. Nakada T, Mizutani M. “18% Efficiency Cd-Free Cu(In,Ga)Se2 thin-film solar cells fabricated using chemical bath deposition (CBD)-ZnS buffer layers,” Japanese Journal of Applied Physics: Part 2 Letters 41 (2002) L165–L167.
8. Ennaoui A, Siebentritt S, Lux-Steiner M Ch, Riedl W, Karg F, ”High-efficiency Cd-free CIGSS thin-film solar cells with solution grown zinc compound buffer layers,” Solar Energy Materials and Solar Cells 67 (2001) 31–40.
9. H. J. Möller, “Semiconductors for Solar Cells,” Artech House Inc., Boston (1993).
10. S. Chen and X. G. Gong, “Physical Review B” 75 (2007) 205-209.
11. Y. Hamakawa, “Thin Film Solar Cells,” 28-31 (2004)163-209.
12. R. W. Birkmire and E. Eser, “Polycrystalline thin film solar cells: present status and future potential,” Annu. Rev. Mater. Sci. 27 (1997) 625-653.
13. W.N. Shafarman, R. Klenk, and B.E. McCandless, “Device and material characterization of Cu(In,Ga)Se2 solar cells with increasing band gap,” J. Appl. Phys. 79 (1996) 7324-7328.
14. Q. Guo, G M. Ford, R. Agrawal and H. W. Hillhouse, “Ink formulation and low-temperature incorporation of sodium to yield 12% efficient Cu(In,Ga)(S,Se)2 solar cells from sulfide nanocrystal inks,” Prog. Photovolt: Res. Appl. 21 (2013) 64–71.
15. G.C. Park, H.D. Chung, C.D. Kim, H.R. Park, W.J. Jeong, J.U. Kim, H.B. Gu, K.S. Lee, “Photovoltaic characteristics of CuInS2/CdS solar cell by electron beam evaporation,”Sol. Energy Mater. Sol. Cells 49 (1997) 365-374.
16. T. Yukawa, K. Kuwabara, K. Koumoto, “Electrodeposition of CuInS2 from aqueous solution (II) electrodeposition of CuInS2 film,” Thin Solid Films 286 (1996) 151-153.
17. D. Guimard, N. Bodereau, J. Kurdi, J.F. Guillemoles, D. Lincot, P.P. Grand, M. Ben Farrah, S. Taunier, O. Kerrec, and P. Mogensen, MRS 2003 Spring Meeting Symposium Proceedings, San Francisco, USA, B6.9.
18. B.J. Brown, and C.W. Bates, “Similarities in the chemical mechanisms of CuInSe2 and CdS thin film formation by chemical spray pyrolysis,” Thin Solid Films 188 (1990) 301-305.
19. M. Kaelin, D. Rudmann, and A.N. Tiwari, “Low cost processing of CIGS thin film solar cells,” Solar Energy 77 (2004) 749-756.
20. V.K. Kapur, A. Bansal, P. Le, I. Omar, “CIS and CIGS layers from selenized nanoparticle precursors,” Thin Solid Films 431 (2003) 53-56.
21. T. Wada, Y. Matsuo, S. Nomura, Y. Nakamura, A. Miyamura, Y. Chiba, A. Yamada, and M. Konagai, “Fabrication of Cu(In,Ga)Se2 thin films by a combination of mechanochemical and screen-printing/sintering processes,” Phys. Stat. Sol. 203 (2006) 2593-2597.
22. S.M. McLeod, C.J. Hages, N.J. Carter and R. Agrawal, “Synthesis and characterization of 15% efficient CIGSSe solar cells from nanoparticle inks,” Prog. Photovolt: Res. Appl. 23 (2015) 1550-1556.
23. C. Suryanarayana, E. Ivanov, R. Noufi, M.A. Contreras, and J.J. Moore, “Synthesis and processing of a Cu-In-Ga-Se sputtering target,” Thin Solid Film 332 (1998) 340-344.
24. T. Sugimoto, Adv. Colloid Interface Sci. 1987, 28, 65.M. Kaelin, D. Rudmann, and A.N. Tiwari, “Low cost processing of CIGS thin film solar cells,” Solar Energy 77 (2004) 749-756.
25. V. K. LaMer, R. H. Dinegar, “Theory, production and mechanism of formation of monodispersed hydrosols,” J. Am. Chem. Soc. 72 (1950) 4847-4848.
26. X. Peng, J. Wickham, A. P. Alivisatos, “Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “focusing” of size distributions,” J. Am. Chem. Soc. 120 (1998) 5343-5344.
27. Z. A. Peng, X. Peng, “Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth,” J. Am. Chem. Soc. 124(13) (2002) 3343-53.
28. J. Park, J. Joo, S. G. Kwon, Y. Jang, and T. Hyeon, Angrew. “Synthesis of monodisperse spherical nanocrystals,” Chem. Int. Ed. 46 (2007) 4630-4660.
29. 游佩青,類均值條件下奈米θ-Al2O3微粒之晶粒成長現象觀察,國立成功大學資源工程研究所,博士論文,中華民國97年6月。
30. P. W. Voorhees, “The theory of ostwald ripening,” J. Statistical Phys., Vol. 38 (1985) Nos. 1/2.
31. I.M. Lifshitz, V.V. Slyozov, "The kinetics of precipitation from supersaturated solid solutions". J. Phys. and Chem. Solids, 19(1-2) (1961) 35–50.
32. D. Fairhurst, and R. W. Lee, “Aggregation, agglomeration-how to avoid aggravation when formulating particulate suspensions,” Drug Delivery Tech., Vol. 8, No. 8 (2008).
33. R. Lee Penn and Jillian F. Banfield, “Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: insights from nanocrystalline TiO2,” Am. Mineralog., 83 (1998) 1077-1082.
34. R. L. Penn, J. F. Banfiled, Geochim. Cosmochim, “Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania,” Acta 63 (1999) 1549-1557.
35. Y.-W. Jun, J.-S. Choi, and J. Cheon, “Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes,” Angew. Chem. Int. Ed. Enql. 45(21) (2006) 3414-3439.
36. H. Cölfen, S. Mann, “Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures,” Angew.Chem. Int. Ed. Engl. 42(21) (2003) 2350-2365.
37. T. Vossmeyer,G. Reck, L. Katsikas, E. T. K. Haupt, B. Schulz, H. Weller, “A “double-diamond superlattice” built up of Cd17S4(SCH2CH2OH)26 clusters,” Science 267 (1995) 1476-1479.
38. W. P. Hsu, L. REnnquist, E. Matijevic, “Preparation and properties of monodispersed colloidal particles of lanthanide compounds. 2. Cerium (IV),” Langmuir 4 (1988) 31-37.
39. S. Wohlrab, N. Pinna, M. Antonietti, H. CElfen, “Polymer-induced alignment of DL-alanime nanocrystals to crystalline mesostructures,” Chem. Eur. J. 11 (2005) 2903-2913.
40. H. Cölfen, and M. Antonietti, “Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment,” Angew. Chem. Int. Ed. 44 (2005) 5576-5591.
41. N. Yamamoto, S. Ishida, and H. Horinaka, “Solid state growth of CuInSe2 and CuInTe2,” Jpn. J. Appl. Phys. 28 (1989) 1780-83.
42. T. Wada and H. Kinoshita, “Rapid exothermic synthesis of chalcopyrite-type CuInSe2,” J. Phys. Chem. Solids 66 (2005) 1987-89.
43. T. Wada, Y. Matsuo, S. Nomura, Y. Nakamura, A. Miyamura, Y. Chiba, A. Yamada, and M. Konagai, "Fabrication of Cu(In,Ga)Se2 thin films by a combination of mechanochemical and screen-printing/sintering processes," Phys. Stat. Sol.(a) 203 (2006) 2593-97.
44. S. Ahn, C. W. Kim, J. H. Yun, J. C. Lee, K. H. Yoon, "Effects of heat treatments on the properties of Cu(In,Ga)Se2 nanoparticles," Solar Energy Mater. & Solar Cells 91 (2007) 1836-1841.
45. Y. A. Yang, H. M. Wu, K. R. Williams, and Y. C. Cao, “Synthesis of CdSe and CdTe nanocrystals without precursor injection,” Angew. Chem. 117(41) (2005) 6870-6873.
46. C.B. Murray, D.J. Norris, and M.G. Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites,” J. Am Chem. Soc. 115 (1993) 8706-8715.
47. Z. Deng, L. Cao, F. Tang, B. Zou, “A New Route to Zinc-Blende CdSe Nanocrystals: Mechanism and Synthesis,” J. Phys. Chem. B, 2005, 109(35), 16671-16675.
48. M. T. Ng, C. B. Bootroyd, J. J. Vittal, “One-Pot Synthesis of New-Phase AgInSe2 Nanorods,” J. Am. Chem. Soc. 128(22) (2006) 7118-7119.
49. Y.-H. A. Wang, C. Pan, N. Bao, A. Gupta, “Synthesis of ternary and quaternary CuInxGa1−xSe2 (0≤x≤1) semiconductor nanocrystals,” Solid State Sci. 11 (2009) 1961-1964.
50. Q. Guo, S.J. Kim, M. Kar, W.N. Shafarman, R.W. Birkmire, E.A. Stach, R. Agrawal, H.W. Hillhouse, “Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells,” Nano Lett. 8 (2008) 2982-87.
51. Glazov, V., Pashinkin, A. & Fedorov, V. Phase equilibria in the Cu-Se system. Inorganic Materials 36 (2000) 641-652.
52. A. J. Martinolich, J. A. Kurzman, and J. R. Neilson, “Polymorph Selectivity of Superconducting CuSe2 Through Kinetic Control of Solid-State Metathesis,” J. Am. Chem. Soc. 137 (2015) 3827-3833.
53. G. M. Singh, S. Bhan, “Phase equilibria and crystal chemical relations in copper-nickel-selenium system,” Prog. Crystal Growth and Charact. 20 (1990) 217-230.
54. Z. Zainal, S. Nagalingam, and T. C. Loo, “Copper selenide thin films prepared using combination of chemical precipitation and dip coating method,” Materials Letters 59 (2005) 1391-1394.
55. O. A. Tánori, M. C. Acosta-Enríquez, R. Ochoa-Landín, R. Iñiguez-Palomares, T. Mendívil-Reynoso, M. Flores-Acosta, S. J. Castillo, “Copper-selenide and copper-telluride composites powders sintetized by ionic exchange”chalcogenide letters 11 (2014) 13-19.
56. M. N. Rahaman, “Ceramic Processing and Sintering,” New York (1995).
57. 高濂、孫靜、劉陽橋,奈米粉體的分散及表面改性,化學工業出版社。
58. W.H. Rhodes, “Agglomeration and particle size effects on mixing yttria stabilized zirconia,” J. Am. Ceram. Soc. 64 (1981) 19-22.
59. J. D. Park, “Growth and electrical characterization of CuInSe2 prepared by the sintering method,” J. Korean Phys. Soc. 25 (1992) 536-540.
60. N. Yamamoto, S. Ishida, and H. Hoinaka, “Solid State Growth of CuInSe2 and CuInTe2,” Jpn. J. Appl. Phys. 28 (1989) 1780-1783.
61. I. Repins, S. Glynn, J. Duenow, T. J. Coutts, W. Metzger, and M. A. Contreras, “Required materials properties for high-efficiency CIGS modules,” NREL/CP-520-46235 (2009) 1-14.
62. Randall M. German, “Liquid phase sintering,” New York (1985).
63. W. X. Zhang, C. Wang, X. M. Zhang, Y. Xie and Y. T. Qian, ”Low temperature synthesis of nanocrystalline Mn3O4 by a solvothermal method, “ Solid State Ionics, 117 (1999) 331–335.
64. Y. H. Zheng, Y. Cheng, Y. S. Wang, L. H. Zhou, F. Bao and C. Jia, “Metastable γ-MnS Hierarchical Architectures: Synthesis, Characterization, and Growth Mechanism, “ J. Phys. Chem. B 110 (2006) 8284–8288.
65. B. Li, Y. Xie, J. X. Huang and Y. T. Qian, “Synthesis by a Solvothermal Route and Characterization of CuInSe2 Nanowhiskers and Nanoparticles, “Adv. Mater., 11(17) (1999) 1456–1459.
66. R.D. Heyding and R.M. Murray, ‘‘The Crystal Structures of Cu1.8Se, Cu3Se2, α- and γCuSe, CuSe2, and CuSe2II,’’ Can. J. Chem., 54 (1976) 841-848.
67. L. C. Wang, L. Y. Chen, T. Luo, K. Y. Bao and Y. T. Tian, ‘‘A facile method to the cube-like MnSe2 microcrystallines via a hydrothermal process,’’ Solid State Comm., 138 (2006) 72–75.
68. S. Y. Zhang, C. X. Fang, Y. P. Tian, Y. P. Tian, K. R. Zhu, B. K. Jin, Y. H. Shen and J. X. Yang, ‘‘Synthesis and Characterization of Hexagonal CuSe Nanotubes by Templating against Trigonal Se Nanotubes,’’ Cryst. Growth Des. 6(12) (2006) 2809–2813.
69. J. Zhu, Q. Li, L. Bai, Y. Sun, M. Zhou, Yi. Xie, ‘‘Metastable Tetragonal Cu2Se Hyperbranched Structures: Large-Scale Preparation and Tunable Electrical and Optical Response Regulated by Phase Conversion,’’ Chem. Eur. J., 18 (2012), 13213-13221.
70. J. Tauc, R. Grigovici, and A. Vancu, ‘‘Optical Properties and Electronic Structure of Amorphous Germanium,’’ Phys. Status Solidi B., 15 (1966) 627-637.
71. T. Liu, Z. Jin, J. Li, J. Wang, D. Wang, J. Lai and H. Du, “ Monodispersed octahedral-shaped pyrite CuSe2 particles by polyol solution chemical synthesis,” CrystEngComm. 15 (2013) 8903–8906.
72. B. Pejova, I. Grozdanov, “Chemical deposition and characterization of Cu3Se2 and CuSe thin films,” Solid State Chem. 158 (2001) 49–54.
73. V.M. GarcmHa, P.K. Nair, M.T.S. Nair, “Copper selenide thin films by chemical bath deposition,” Journal of Crystal Growth. 203 (1999) 113-124.
74. S. Garrigues, M. Gallignani, and M. De la Guardia, “Simultaneous Determination of ortho-, meta- and para-Xylene by Flow Injection-Fourier Transform Infrared Spectroscopy,” Analyst. 117 (1992) 1849-1853.
75. A.C. Ferrari, and J. Robertson, “Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon,” Phys. Rev. B., 64 (2001) 075414-075427.
76. Y.M. Strzhemechny, P.E. Smith, S.T. Bradley, D.X. Liao, A.A. Rockett, K. Ramanathan, L.J. Brillson, “Near-surface electronic defects and morphology of CuIn1-xGaxSe2,” J. Vac. Sci. Tech. B 20 (2002) 2441-48.
77. C.T. Yang, H.I. Hsiang, and J.H. Tu, “Copper selenide crystallites synthesized using the hot-injection process,” Adv. Powder Technol., 27 (2016) 959–963.
78. G.D. Liang, L.P. Shen, X.L. Zhang, and G.Z. Zou, “One-Pot Synthesis of Dual-Stabilizer-Capped CdTe Nanocrystals with Efficient Near-Infrared Photoluminescence and Electrochemiluminescence,” Eur. J. Inorg. Chem., 25 (2011) 3726–3730.
79. R.B. Shafizade, I.V. Ivanova, and M.M. Kazinets, “Electron diffraction study of phase transformations of the compound CuSe,” Thin Solid Films, 55 (1978) 211-220.
80. R.M. Murray and R.D. Heyding, “The Copper-Selenium System at Temperatures to 850 K and Pressures to 50 kbar,” Can. J. Chem., 53 (1975) 878-887.
81. A. Zevalkink, E.S. Toberer, T. Bleith, E.Flage-Larsen, G.J. Snyder, “Improved carrier concentration control in Zn-doped Ca5Al2Sb6,” J. Appl. Phys. 110 (2011) 013721-013725.
82. I. Sanyal, K.K. Chattopadhyay, S. Chaudhuri, A.K. Pal, “Grain boundary scattering in CuInSe2 films,” J. Appl. Phys. 70 (1991) 841-845.