簡易檢索 / 詳目顯示

研究生: 林忠憲
Lin, Chung-Hsien
論文名稱: 壓電懸臂樑式靜態力量感測器之設計與製作
Design and Fabrication of Static Force Sensor Using Piezoelectric Cantilever Beam
指導教授: 蔡明祺
Tsai, Mi-Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 62
中文關鍵詞: 自動組裝系統懸臂樑單層壓電樑壓電靜態力感測器
外文關鍵詞: automation assembly system, cantilever beam, piezoelectric force sensor, unimorph
相關次數: 點閱:76下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因應消費者的需求,攜帶式電子產品近年來皆趨向小型化及多功能化,組成這些產品的元件尺寸也朝向微小化發展。因此,基於自動化生產及高精確度要求,發展微小元件自動組裝系統的重要性不言可喻。針對微小元件的夾持,為確保自動組裝系統具有足夠的夾持力,夾爪的夾持力控制是其中的關鍵技術。而力量感測器更是在發展夾持力控制技術上,不可或缺的重要元件之ㄧ。一般而言,壓電元件因其具有高靈敏度及低成本的特性,故廣泛的應用於力量量測器中。然而傳統壓電式力量感測器僅適用於量測施加力的變化,其在量測靜態力時,量得之數值會逐漸地回到零點,因此不適用於靜態力的量測。
    本論文設計一壓電懸臂樑結構之靜態力感測器。一般而言,大部分壓電式靜態力感測器量測結構自然頻率的偏移量來估測施加力之值。而本論文提出之量測方法則是利用壓電元件之阻抗會隨著靜態力作用而變化之特性,從而量測電流振幅的變化以分析施加力之大小。本文提出之量測方法如下:1.施加固定頻率及振幅之弦波電壓於壓電懸臂樑上;2.藉由電流探棒量測輸入電流;3.採用FFT分析得到激振頻率下的電流振幅。根據此量測流程,壓電懸臂樑即可當作靜態力感測器使用。懸臂樑的尺寸為40X10X2 mm3,此尺寸可與自動組裝系統之夾爪結合。且驅動電壓僅需1 Vpp,輸入功率小於大部分靜態力感測器。除此之外,壓電元件固有的特性是對於變化的力有快速的響應,亦即,本論文提出之靜態力感測器不僅可以量測靜態力,亦可快速響應出力的變化。

    Portable electronic products are being developed toward minimization and versatility in accordance with customers’ needs. Thus, the tiny objects embedded in these products are smaller. An automation assembly system for producing the products is needed for the sake of automatic production and high accuracy demands. The force control of the gripper plays an important role in the automation assembly system for maintaining a sufficient gripping force. A force sensor is required in the force control system for measuring the applied force. Piezoelectric force sensors are being extensively used to measure the forces due to the characteristics of high sensitivity and low cost. However, the force tends to be static when the gripper grasps the tiny objects. Hence, the traditional piezoelectric force sensors are not adequate since the charge generated by the applied static force discharges slowly.
    In this thesis, a novel static force sensor using a piezoelectric cantilever beam is designed. Generally speaking, most piezoelectric static force sensors measure natural frequency shifting caused by force. The novel concept proposed in this thesis is that static force is measured by the current amplitude variation. This concept is based on the characteristics that the impedance of piezoelectric elements varies with applied forces. The measurement method of this sensor is as follows: A fixed frequency and constant amplitude sinusoidal voltage source is supplied to a piezoelectric cantilever beam. Then the input current is measured by current probe. Subsequently the current amplitude with the excited frequency is obtained through an FFT analysis. According to this novel concept, the piezoelectric cantilever beam is regarded as a static force sensor. The dimensions of this sensor are 40X10X2 mm3. Hence, this miniature sensor can be integrated into a gripper for automation assembly systems. Moreover, the excitation voltage is 1 Vpp, so that the input power is less than most static force sensors. Additionally, quick response to a dynamic force is an inherent ability of piezoelectric materials. That is to say, the static force sensor proposed in this thesis can measure not only the static force but also the dynamic force.

    摘要 ........................................................ I Abstract ................................................... II 致謝 ...................................................... III List of Tables ............................................. VI List of Figures ........................................... VII Nomenclatures ............................................... X Chapter 1 Introduction ...................................... 1 1.1 Motivation .............................................. 1 1.2 Background Review ....................................... 3 1.2.1 Force Sensor .......................................... 3 1.2.2 Static Force Sensor Using Piezoelectric Device ........ 7 1.3 Purpose and Approach ................................... 10 1.4 Structure of this Thesis ............................... 11 Chapter 2 Piezoelectric Static Force Sensor ................ 12 2.1 Piezoelectricity ....................................... 12 2.1.1 Piezoelectricity Effects ............................. 12 2.1.2 Piezoelectric Materials .............................. 12 2.1.3 Constitutive Equations ............................... 14 2.1.4 Types of Operation ................................... 18 2.2 A New Concept of Static Force Measurement .............. 18 Chapter 3 Piezoelectric Cantilever Beam .................... 22 3.1 Mathematical Model ..................................... 22 3.2 ANSYS Simulation ....................................... 28 3.3 Experimental Result .................................... 30 3.4 Static Force Application ............................... 33 Chapter 4 Static Force Measurement ......................... 37 4.1 Variation Caused by Force .............................. 37 4.1.1 Equivalent Circuit Model ............................. 37 4.1.2 Variation in Material Properties ..................... 39 4.2 Measuring Principle .................................... 40 4.3 Specifications of General Sensors ...................... 41 4.4 Experimental Results ................................... 44 4.4.1 Operating Frequency .................................. 44 4.4.2 Measurement Set-up ................................... 45 4.4.3 Current Variation .................................... 46 4.5 Discussions ............................................ 49 Chapter 5 Conclusions and Recommendations .................. 52 5.1 Conclusions ............................................ 52 5.2 Recommendations for Future Research .................... 53 References ................................................. 54 Appendix A ................................................. 58 Appendix B ................................................. 60 Biography .................................................. 62

    [1]M.C. Tsai and L.Y. Hsu, “Design of a miniature axial-flux spindle motor with rhomboidal PCB winding,” IEEE Transactions on Magnetics, vol. 42, no. 10, pp. 3488-3490, 2006.
    [2]MEMS Precision Instruments, http://www.memspi.com/.
    [3]Y. Suzuki, “Master input apparatus for microgripper and microgripper system provided with the master input apparatus,” US Patent 5727915, 1998.
    [4]B.I. Govzman and C. Foxman, “Robotic gripper apparatus,” US Patent 6626476, 2003.
    [5]Festo Co., Ltd., http://www.festo.com/.
    [6]P.J. Conway and G.E. Mauro, “Microgripper,” US Patent 5458387, 1995.
    [7]G. Mauro, “Cam Operated Microgripper,” US Patent 5895084, 1999.
    [8]P.J. Conway and G.E. Mauro, “Microgripper,” US Patent 5538305, 1996.
    [9]C.H. Lin, P. Hsueh, S.H. Wang, and M.C. Tsai, “Prototype of a piezoelectric precision gripper applied to assemble parts of penny motors,” in Proceedings of International Symposium on Industrial Electronics, Mechatronics and Applications, Kaohsiung, Taiwan, 2007.
    [10]Z. Lu, P.C.Y. Chen, and W. Lin, “Force sensing and control in micromanipulation,” IEEE Transactions on Systems, Man and Cybernetics-Part C: Applications and Reviews, vol. 36, no. 6, pp. 713-724, 2006.
    [11]A. Menciassi, A. Eisinberg, M.C. Carrozza, and P. Dario, “Force sensing microinstrument for measuring tissue properties and pulse in microsurgery,” IEEE/ASME Transactions on Mechatronics, vol. 8, no. 1, pp. 10–17, 2003.
    [12]S. Fahlbusch and S. Fatikow, “Micro force sensing in a micro robotic system,” in Proceedings of IEEE International Conference on Robotic and Automations, Seoul, Korea, 2001.
    [13]D.H. Kim, B. Kim, and H.J. Kang, “Development of a piezoelectric polymer-based sensorized microgripper for micromanipulation and microassembly,” Microsystem Technologies, vol. 10, no. 4, pp. 275–280, 2004.
    [14]Y.T. Shen, N. Xi, W.J. Li, and J.D. Tan, “A high sensitivity force sensor for microassembly: design and experiments,” in Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Kobe, Japan, 2003.
    [15]C.K.M. Fung, I. Elhajj, W.J. Li, and N. Xi, “A 2-D PVDF force sensing system for micromanipulation and micro-assembly,” in Proceedings of IEEE International Conference on Robotic and Automation, Washington, DC, USA, 2002.
    [16]Y. Sun, K.T. Wan, K.P. Roberts, J.C. Bischof, and B.J. Nelson, “Mechanical property characterization of mouse zona pellucida,” IEEE Transactions on Nanobioscience, vol. 2, no. 4, pp. 279–286, 2003.
    [17]B.J. Nelson, Y. Zhou, and B. Vikramaditya, “Sensor-based microassembly of hybrid MEMS devices,” IEEE Control Systems Magazine, vol. 18, no. 6, pp. 35–45, 1998.
    [18]X.J. Tian, N.D. Jiao, L.Q. Liu, Y.C. Wang, Z.L. Dong, N. Xi, and W.J. Li, “An AFM based nanomanipulation system with 3D nano forces feedback,” in Proceedings of IEEE International Conference on Intelligent Mechatronics and Automation, Chengdu, China, 2004.
    [19]K.T. Park, R.D. Klafter, and P.E. Bloomefield, “A charge readout algorithm for piezoelectric force transducers,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 33, no. 6, p. 818, 1986.
    [20]M. Lord and D.M. Smith, “Static response of a simple piezoelectric load cell,” Journal of Biomedical Engineering, vol. 5, no. 2, pp. 162-164, 1983.
    [21]S. Bah, G. Quezel, P. Benech, L. Ngalamou, and J.F. Legrand, “Effect of compressive stress on a composite resonator based on PVF2,” in Proceedings of IEEE Ultrasonics Symposium, Grenoble, France, 1992.
    [22]L. Ngalamou, N. Noury, E. Chamberod, and P. Benech, “Analysis of the sensitivity and the temperature influence of a static force sensor based on a PVDF resonator,” Sensors and Actuators A, vol. 57, no. 3, pp. 173-177, 1996.
    [23]S. Ozeri and D. Shmilovitz, “Static force measurement by piezoelectric sensors,” in Proceedings of IEEE International Symposium on Circuits and Systems, Island of Kos, Greece, 2006.
    [24]P. Sekalski, A. Napieralski, M. Fouaidy, A. Bosotti, and R. Paparella, “Measurement of static force at liquid helium temperature,” Measurement Science and Technology, vol. 18, no. 8, pp. 2356-2364, 2007.
    [25]A. Cheshmehdoost and B.E. Jones, “Design and performance characteristics of an integrated high-capacity DETF-based force sensor,” Sensors and Actuators A, vol. 52, no. 1-3, pp. 99-102, 1996.
    [26]L. Meirovitch, Analytical Methods in Vibrations, The MacMillan Company Collier-MacMillan Limited, 1967.
    [27]C. Gehin, C. Barthod, and Y. Teisseyre, “Design and characterisation of a new force resonant sensor,” Sensors and Actuators A, vol. 84, no.1-2, pp. 65-69, 2000.
    [28]C. Barthod, Y. Teisseyre, C, Gehin, and G. Gautier, “Resonant force sensor using a PLL electronic,” Sensors and Actuators A, vol. 104, no. 2, pp. 143-150, 2003.
    [29]S.S. Lee, K.Y. Shin, and J.H. Mun, “Development of an algorithm for a PZT ceramic foot pressure sensor,” Key Engineering Materials, vol. 321-323, pp. 1111-1114, 2006.
    [30]F. Li and Z. Jiang, “Development of a piezo-cantilever transducer and measuring method for evaluation of a temperature-sensitive polymer gel membrane,” Smart Materials and Structures, vol. 16, no. 3, pp. 858-865, 2007.
    [31]J. Lu, T. Ikehara, Y. Zhang, T. Mihara, T. Itoh, and R. Maeda, “High quality factor silicon cantilever transduced by piezoelectric lead zirconate titanate film for mass sensing applications,” Japanese Journal of Applied Physics, vol. 46, no. 12, pp. 7643-7647, 2007.
    [32]D. Shmilovitz, M. Kerman, S. Ozeri, ans S. Engelberg, “Static force measurement with piezoelectric sensors based on pseudorandom sequences,” in the 34th Annual Conference of the IEEE Industrial Electronics Society, Orlando, Florida, USA, 2008.
    [33]M.S. Zarnik, D. Belavic, S. Macek, and J. Holc, “Feasibility study of a thick-film PZT resonant pressure sensor made on a prefired 3D LTCC structure,” International Journal of Applied Ceramic Technology, vol. 6, no. 1, pp. 9-17, 2009.
    [34]K. Motoo, F. Arai, and T. Fukuda, “Piezoelectric vibration-type tactile sensor using elasticity and viscosity change of structure,” IEEE Sensors Journal, vol. 7, no. 7-8, pp. 1044-1051, 2007.
    [35]R. Stroop, D.O. Uribe, M.O. Martinez, M. Brokelmann, T. Hemsel, and J. Wallaschek, “Tactile tissue characterisation by piezoelectric systems,” Journal of Electroceramics, vol. 20, no. 3-4, pp. 237-241, 2008.
    [36]C.H. Lin, W.S. Yao, P. Hsueh, and M.C. Tsai, “Design and analysis of a piezoelectric precision gripper,” in International Conference on MicroManufacturing, Pittsburgh, Pennsylvania, USA, 2008.
    [37]Physik Instrumente (PI) GmbH & Co., http://www.physikinstrumente.com/.
    [38]T. Ikeda, Fundamentals of Piezoelectricity, Oxford University Press, 1990.
    [39]IEEE Standard on Piezoelectricity, ANSI/IEEE Std. 176-1987, 1987.
    [40]R.C. Hibbeler, Mechanics of Materials, 6th edition, Pearson Prentice Hall, 2005.
    [41]D.K. Cheng, Field and Wave Electromagnetics, 2nd edition, Addison-Wesley, 1989.
    [42]Y.S. Cho, Y.E. Park, C.S. Han, and S.K. Ha, “Five-port equivalent electric circuit of piezoelectric bimorph beam,” Sensors and Actuators A, vol. 84, no. 1-2, pp. 140-148, 2000.
    [43]J. Fraden, Hand Book of Modern Sensors: Physics, Designs, and Applications, 2nd edition, Springer-Verlag, 1996.

    下載圖示 校內:2010-07-10公開
    校外:2010-07-10公開
    QR CODE