簡易檢索 / 詳目顯示

研究生: 蘇倍民
Su, Bei-Min
論文名稱: 幾何參數化之人體鎖骨建模及驗證
Modeling and Validation of A Geometry-based Parametric Human Clavicle
指導教授: 黃才烱
Huang, Tsai-Jeon
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 115
中文關鍵詞: 鎖骨傷害驗證測試生物擬真性
外文關鍵詞: Clavicle Injury, Certification Tests, Biofidelity
相關次數: 點閱:79下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 強大的外力直接衝擊肩膀時,鎖骨骨折是常見的外傷形式。雖然鎖骨骨折的致命率極低,但卻會造成上肢運動不便,嚴重影響日常生活及工作。
    為了瞭解鎖骨的傷害機制及鎖骨的傷害情形,可以建立鎖骨的有限元素電腦模型進行分析與研究。但是鎖骨電腦模型的建立通常要透過高精度的電腦斷層掃瞄,得到斷面資料後再加以建模。此過程不但繁複且需要較高的時間以及金錢成本(高精度斷層掃瞄機的使用或維護費用)。本研究的目的在於,找出適當的鎖骨幾何參數,設計出一套將鎖骨複雜幾何參數化的建模方法,不需要透過電腦斷層掃瞄,也能建立出一根鎖骨電腦模型,具有和真實鎖骨相似的幾何特徵以及生物擬真性,可供有限元素分析使用。
    本研究首先收集有關鎖骨幾何外型以及力學測試的相關資料,其中力學測試包括三點彎曲測試、鎖骨軸向靜力測試、動態撞擊測試。本研究根據鎖骨外型的資料,設計出鎖骨電腦模型的繪製方法,根據此方法繪製出均勻以及不均勻緻密骨厚度的鎖骨模型,除此之外也透過電腦斷層掃瞄建立真實鎖骨模型進行比較。之後整理各種大體測試的資料,繪製出生物驗證區間並用有限元素分析軟體做與大體測試相同的模擬測試,將模擬結果與生物驗證區間做比對,並用累積變異數比率CVR值來評估模型是否具有生物擬真性。本研究另透過強制振動試驗,獲得此鎖骨的振動頻率,作為真實鎖骨電腦模型擬真性驗證比對的參考。
    本研究利用電腦模擬結果與大體資料交互比對,證實根據本研究設計的繪製方法所得到的鎖骨模型具有良好的生物擬真性。

    When external forces direct impact on the shoulder, the clavicle is easy to be fractured. Although clavicle fracture is non-fatal, it will cause inconvenience to human arm movement and seriously affect the daily life and work.
    In order to realize how clavicle be injured, we need a clavicle computer model which can be used in finite element analysis. Clavicle computer model is built normally via computed tomography. This process is not only complicated but also requires a higher cost time and money( The fees of using high-precision CT scanner).This study aims to design a method to build a clavicle computer model without going through a computer tomography. The clavicle model has similar geometric characteristics and biofidelity with real clavicle.
    This study first collected data about clavicle geometry and cadaver test. Tests include three-point bending test, clavicle axial static testing and dynamic impact test. This study designed a method to build clavicle computer models. Then build an uniform and a nonuniform cortical thickness clavicle model. This study also built a clavicle model by computer tomography. Then we derived biometric corridor from a variety of cadaver tests. This study used finite element analysis software to do the same simulation tests with cadaver tests and compared the results. We used cumulative variance ratio value to realize the clavicle model has biofidelity or not. This study also obtained clavicle model’s and clavicle’s vibration frequency to validate clavicle model’s biofidelity.
    This study proved the method to build a clavicle model is reliable and the models have biofidelity by many validation tests.

    目錄 摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 IX 符號說明 XIV 第一章 緒論 1 1.1 前言 1 1.2 論文架構 4 第二章 研究背景 6 2.1 上肢 6 2.1.1 上肢各部位組成 6 2.2 鎖骨 10 2.2.1 鎖骨構造 10 2.2.2 鎖骨尺寸 13 2.2.3 鎖骨剖面尺寸 14 2.2.4 鎖骨各區塊角度比例 16 2.2.5 鎖骨剖面形狀 18 2.2.6 鎖骨材料性質 20 2.3 鎖骨傷害背景 21 2.3.1 鎖骨受傷方式 21 2.3.2 簡易傷害指數 24 2.3.3 鎖骨骨折資料 25 2.4 電腦模擬與理論基礎 29 第三章 鎖骨電腦模型 30 3.1 幾何外型建立 30 3.1.1 中心線 32 3.1.2 剖面位置 36 3.1.3 剖面形狀及尺寸 36 3.2 模型建立 39 3.2.1 模型網格化 39 3.2.2 模型比較 42 3.3 生物擬真性驗證測試 45 3.3.1 三點彎曲測試 45 3.3.2 靜力測試 49 3.3.3 撞擊測試 51 3.3.4 振動測試 55 3.3.5 生物擬真性評估方法 59 3.3.6 驗證流程 61 第四章 生物擬真性驗證 62 4.1 模擬前設置 62 4.2 三點彎曲測試 64 4.2.1 在0度方位上的三點彎曲測試 65 4.2.2 在45度方位上的三點彎曲測試 68 4.2.3 綜合比較 71 4.3 靜力測試 75 4.3.1 模擬結果分析 76 4.3.2 綜合比較 80 4.4 撞擊測試 81 4.4.1 撞擊速度1.0m/s的模擬結果 83 4.4.2 撞擊速度1.5m/s的模擬結果 86 4.4.3 撞擊速度2.0m/s的模擬結果 90 4.4.4 撞擊速度2.5m/s的模擬結果 93 4.4.5 綜合比較 97 4.5 振動測試 98 4.5.1 結果分析 98 4.5.2 綜合比較 102 第五章 結論與建議 104 5.1 結論 104 5.2 建議與未來發展 105 參考文獻 107 附錄A 110 附錄B 114

    Allman, F. L., Jr. (1967), “ Fractures and ligamentous injuries of the clavicle and its articulation.” J Bone Joint Surg Am, 49(4), pp.774-784.
    Andermahr, J., Jubel, A., Elsner, A., Johann, J., Prokop, A., Rehm, K. E., & Koebke, J. (2007), “ Anatomy of the clavicle and the intramedullary nailing of midclavicular fractures.” Clin Anat, 20(1), pp.48-56.
    Bachoura, A., Deane, A. S., Wise, J. N., & Kamineni, S. (2013), “ Clavicle morphometry revisited: a 3-dimensional study with relevance to operative fixation.” J Shoulder Elbow Surg, 22(1), pp.e15-21.
    Bolte, J. H. th, Hines, M. H., McFadden, J. D., & Saul, R. A. (2000), “ Shoulder response characteristics and injury due to lateral glenohumeral joint impacts.” Stapp Car Crash J, 44, pp.261-280.
    Conroy, C., Schwartz, A., Hoyt, David B., Brent Eastman, A., Pacyna, S., Holbrook, T., . . . Erwin, S. (2007), “ Upper extremity fracture patterns following motor vehicle crashes differ for drivers and passengers.” Injury, 38(3), pp.350-357.
    Daruwalla, Z. J., Courtis, P., Fitzpatrick, C., Fitzpatrick, D., & Mullett, H. (2010), “ Anatomic variation of the clavicle: A novel three-dimensional study.” Clin Anat, 23(2), pp.199-209.
    Duprey, S., Bruyere, K., & Verriest, J. P. (2005). Numerical Simulation of Shoulder Response to a Lateral Impact with the HUMOS Model. In M. D. Gilchrist (Ed.), IUTAM Symposium on Impact Biomechanics: From Fundamental Insights to Applications (Vol. 124, pp. 451-458): Springer Netherlands.
    Duprey, S., Bruyere, K., & Verriest, J. P. (2008), “ Influence of geometrical personalization on the simulation of clavicle fractures.” J Biomech, 41(1), pp.200-207.
    Frampton, R. J., Morris, A. P., Thomas, P., & Bodiwala, G. G. (1997), “ An overview of upper extremity injuries to car occupants in uk vehicle crashes.” IRCOBI, pp.37-51.
    Fung, Y.C. (1993), “ Biomechanics: Mechanical Properties of Living Tissues.”
    Iwamoto, M., Miki, K., Mohammad, M., Nayef, A., Yang, K. H., Begeman, P. C., & King, A. I. (2000), “ Development of a finite element model of the human shoulder.” Stapp Car Crash J, 44, pp.281-297.
    Kemper, A. R., Stitzel, J. D., McNally, C., Gabler, H. C., & Duma, S. M. (2009), “ Biomechanical response of the human clavicle: the effects of loading direction on bending properties.” J Appl Biomech, 25(2), pp.165-174.
    Li, Z., Kindig, M. W., Kerrigan, J. R., Kent, R. W., & Crandall, J. R. (2012), “ Development and validation of a subject-specific finite element model of a human clavicle.” Comput Methods Biomech Biomed Engin.
    Marieb, E.N., & Mallatt, J. (2002), Human Anatomy: Benjamin-Cummings Publishing Company.
    McGwin, G., Jr., Metzger, J., Alonso, J. E., & Rue, L. W., 3rd. (2003), “ The association between occupant restraint systems and risk of injury in frontal motor vehicle collisions.” J Trauma, 54(6), pp.1182-1187.
    Philippens, M., Cappon, H., van Ratingen, M., Wismans, J., Svensson, M., Sirey, F., . . . Matsuoka, F. (2002), “ Comparison of the Rear Impact Biofidelity of BioRID II and RID2.” Stapp Car Crash J, 46, pp.461-476.
    Postacchini, F., Gumina, S., De Santis, P., & Albo, F. (2002), “ Epidemiology of clavicle fractures.” Journal of Shoulder and Elbow Surgery, 11(5), pp.452-456.
    Rao, S.S., & Yap, F.F. (2011), Mechanical Vibrations: Prentice Hall.
    Reilly, Donald T., & Burstein, Albert H. (1975), “ The elastic and ultimate properties of compact bone tissue.” Journal of Biomechanics, 8(6), pp.393-405.
    Stanley, D., Trowbridge, E. A., & Norris, S. H. (1988), “ The mechanism of clavicular fracture. A clinical and biomechanical analysis.” J Bone Joint Surg Br, 70(3), pp.461-464.
    Terry, G. C., & Chopp, T. M. (2000), “ Functional anatomy of the shoulder.” J Athl Train, 35(3), pp.248-255.
    Walters, J., Solomons, M., & Roche, S. (2010), “ A morphometric study of the clavicle.” SA Orthopaedic Journal, 9, pp.47-52.
    Yamada, H., & Evans, F.G. (1970), Strength of biological materials: Williams & Wilkins.
    交通部(2012),道路交通事故及違規概況,交通部,台北,台灣。
    交通部公路總局(2012),機動車輛登記數,交通部,台北,台灣。
    李國彰(2000),「孔口式調諧液柱阻尼器」孔口開度對結構減振之效應,國立成功大學水利及海洋工程研究所碩士論文。
    黃廷安(2010),電腦肩膀衝擊模擬器之設計,國立成功大學機械工程研究所碩士論文
    鄭麗菁等人編譯(2008),醫用解剖學,合記圖書出版社,台北,台灣。

    下載圖示 校內:2016-08-30公開
    校外:2018-08-30公開
    QR CODE