簡易檢索 / 詳目顯示

研究生: 陳鵬宇
Chen, Peng-Yu
論文名稱: 基於睡眠階段轉換信賴度分析之人機合作睡眠判讀系統
Development and Evaluation of Human-Computer Cooperation Sleep Scoring System Based on The Reliability Analysis of Sleep Stage Changes
指導教授: 梁勝富
Liang, Sheng-Fu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 45
中文關鍵詞: 自動睡眠分期信賴度分析人機合作
外文關鍵詞: Automatic sleep staging, reliability analysis, human-computer cooperation
相關次數: 點閱:96下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 睡眠在人類生活中佔據了三分之一以上,擁有良好的睡眠對於生活品質有著明顯 的幫助。但並不是所有人都擁有良好的睡眠品質,許多人受到睡眠相關疾病所困擾, 因此在臨床上會使用多通道睡眠生理紀錄儀 (Polysomnography, PSG) 進行檢查,由 專家對於收錄的生理訊號進行人工判讀並由專家或醫生進行診斷。由於人工判讀是 一件十分主觀且耗時的工作,故有許多睡眠自動判讀演算法被提出。雖然這些演算 法在準確率上有不錯的表現,但都只提供了一個最終的判讀結果。由於專家無法得 知自動判讀方法的判讀依據,故若專家無法完全相信自動判讀的結果就得重新進行 人工判讀,如此一來自動判讀演算法就不能達到其設計的目的,減少判讀時間。因 此本研究提出一套基於睡眠生理訊號的特徵分析,進而提供信賴度當參考的人機合 作睡眠輔助判讀系統本系統的優點是把判讀結果分為高信賴度與低信賴度兩部份, 使得人工判讀時可以略過高信賴度的判讀結果,來達到減少判讀時間,也讓專家可 以相信整體的判讀結果。本系統經過兩名判讀者測試,全人工判讀與透過輔助判讀 系統之平均整體一致性可達到 88.47%,kappa 僻數為 0.82,平均可以減少 56.2% 的 判讀時間。未來我們系望藉由這套人機合作的睡眠輔助判讀系統在臨床上可以有實 際的應用,除了提供更可靠之判讀結果外,同時真正的減少睡眠判讀所需之時間。

    Sleep occupy more than one-third of human life, have a good sleep for the quality of life has a significant help. But not everyone has a good quality of sleep, many people have been plagued by sleep-related disorders. Therefore, the clinical use Polysomnog- raphy (PSG) to recording sleep physiological signals. The collection of physiological signals will be manual scoring by expert for diagnosis. Since manual scoring is a very subjective and time-consuming work, so there are many sleep automatic scoring methods have been proposed. Although the agreement of these methods on a good performance, but only provides a final interpretation of the results. Experts can not know the basis of automatic scoring methods, so experts need to re-scoring when the scoring result not to be believed, in this way automatic scoring method can not achieve its designed purpose, to reduce interpretation time. Therefore, this study proposes a human-computer cooperation scoring system which based on sleep physiological signals, to providing reliability as reference. Advantages of this system is the scoring results is divided into two parts, high reliability and low reliability. Scorer can skip the high reliability epochs to reduce scoring time, and let experts believe the overall scoring re- sults. The system has been testing by two scorer, the average agreement of full manual scoring and work with cooperation systems can reach 88.47%, kappa coefficient was 0.82, and can reduce 56.2% scoring time. We hope this human-computer cooperation scoring system can practical on clinical applications, providing a more reliable scoring results, in addition to reduce scoring time.

    摘要 I Abstract II 誌謝 III Contents IV List of Tables VI List of Figures VII Chapter 1 Introduction 1 1.1 Background 1 1.2 Visual Scoring Rules for Human Sleep 1 1.3 Automatic Sleep Scoring 4 1.4 Motivation 5 1.5 Thesis Overview 6 Chapter 2 Method 7 2.1 Materials 7 2.2 Rule-based Automatic Sleep Staging Method 9 2.3 Reliability Analyze 12 2.3.1 Sleep Feature Based Reliability Analyze 13 2.3.2 Stage Information Based Reliability Analyze 18 2.3.3 Vote Process 23 2.4 Scoring Interface 23 Chapter 3 Result 25 3.1 Reliability Result 25 3.2 Agreement 27 3.3 Time-Saving Achievements 29 3.4 Sleep Parameters 32 3.5 Inter Scorer Agreement 34 Chapter 4 Discussion 35 4.1 Different Reliability Level 35 4.2 Sleep Efficiency 38 4.3 Cooperation Scoring Process 40 4.4 User Interview 40 Chapter 5 Conclusion and Future Work 41 Reference 42

    [1] R. Agarwal and J. Gotman. Computer-assisted sleep staging. Biomedical Engi- neering, IEEE Transactions on, 48(12):1412–1423, 2001.
    [2] D. G. Altman. Practical statistics for medical research. CRC Press, 1990.
    [3] P. Anderer, G. Gruber, S. Parapatics, M. Woertz, T. Miazhynskaia, G. Kl¨osch, B. Saletu, J. Zeitlhofer, M. J. Barbanoj, H. Danker-Hopfe, et al. An e-health solution for automatic sleep classification according to rechtschaffen and kales: validation study of the somnolyzer 24× 7 utilizing the siesta database. Neuropsy- chobiology, 51(3):115–133, 2005.
    [4] C. Berthomier, X. Drouot, M. Herman-Sto¨ıca, P. Berthomier, J. Prado, D. Bokar- Thire, O. Benoit, J. Mattout, and M.-P. d’Ortho. Automatic analysis of single- channel sleep eeg: validation in healthy individuals. Sleep, 30(11):1587, 2007.
    [5] F. Chapotot and G. Becq. Automated sleep–wake staging combining robust fea- ture extraction, artificial neural network classification, and flexible decision rules. International Journal of Adaptive Control and Signal Processing, 24(5):409–423, 2010.
    [6] H. Danker-hopfe, P. Anderer, J. Zeitlhofer, M. Boeck, H. Dorn, G. Gruber, E. Heller, E. Loretz, D. Moser, S. Parapatics, et al. Interrater reliability for sleep scoring according to the rechtschaffen & kales and the new aasm standard. Journal of sleep research, 18(1):74–84, 2009.
    [7] H. Danker-Hopfe, D. Kunz, G. Gruber, G. Klo¨sch, J. Lorenzo, S. Himanen, B. Kemp, T. Penzel, J. R¨oschke, H. Dorn, et al. Interrater reliability between scorers from eight european sleep laboratories in subjects with different sleep dis- orders. Journal of sleep research, 13(1):63–69, 2004.
    [8] F. Duman, A. Erdamar, O. Erogul, Z. Telatar, and S. Yetkin. Efficient sleep spindle detection algorithm with decision tree. Expert Systems with Applications, 36(6):9980–9985, 2009.
    [9] B. Jansen and B. Dawant. Knowledge-based approach to sleep eeg analysis-a feasibility study. Biomedical Engineering, IEEE Transactions on, 36(5):510–518, 1989.
    [10] S.-F. Liang, C.-E. Kuo, Y.-H. Hu, and Y.-S. Cheng. A rule-based automatic sleep staging method. Journal of neuroscience methods, 205(1):169–176, 2012.
    [11] S.-F. Liang, C.-E. Kuo, Y.-H. Hu, Y.-H. Pan, and Y.-H. Wang. Automatic stage scoring of single-channel sleep eeg by using multiscale entropy and au- toregressive models. Instrumentation and Measurement, IEEE Transactions on, 61(6):1649–1657, 2012.
    [12] M. W. Mahowald and C. H. Schenck. Insights from studying human sleep disor- ders. Nature, 437(7063):1279–1285, 2005.
    [13] A. Malhotra, M. Younes, S. T. Kuna, R. Benca, C. A. Kushida, J. Walsh, A. Han- lon, B. Staley, A. I. Pack, and G. W. Pien. Performance of an automated polysomnography scoring system versus computer-assisted manual scoring. Sleep, 36(4):573, 2013.
    [14] M. M. Ohayon. Epidemiology of insomnia: what we know and what we still need to learn. Sleep medicine reviews, 6(2):97–111, 2002.
    [15] H. Park, K. Park, and D.-U. Jeong. Hybrid neural-network and rule-based expert system for automatic sleep stage scoring. In Engineering in Medicine and Biology Society, 2000. Proceedings of the 22nd Annual International Conference of the IEEE, volume 2, pages 1316–1319. IEEE, 2000.
    [16] H.-J. Park, J.-S. Oh, D.-U. Jeong, and K.-S. Park. Automated sleep stage scoring using hybrid rule-and case-based reasoning. Computers and Biomedical Research, 33(5):330–349, 2000.
    [17] S. D. Pittman, M. M. MacDonald, R. B. Fogel, A. Malhotra, K. Todros, B. Levy, A. B. Geva, and D. P. White. Assessment of automated scoring of polysomno- graphic recordings in a population with suspected sleep-disordered breathing. Sleep, 27(7):1394–1403, 2004.
    [18] D. Popovic, I. Ayappa, P. Hauri, D. Levendowski, V. Velimirovic, O. Burschtin, D. M. Rapoport, and P. Westbrook. Accuracy of automated sleep staging using signals from a single forehead site. Sleep, 31:332, 2008.
    [19] A. Rechtschaffen and A. Kales. A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. 1968.
    [20] R. S. Rosenberg, S. Van Hout, et al. The american academy of sleep medicine inter-scorer reliability program: sleep stage scoring. J Clin Sleep Med, 9(1):81–87, 2013.
    [21] N. SCALES. ment process performed by &dquo; two-legged meter&dquo;(stevens, 1958). Educational and psychological measurement, 20(1), 1960.
    [22] N. Schaltenbrand, R. Lengelle, M. Toussaint, R. Luthringer, G. Carelli, A. Jacqmin, E. Lainey, A. Muzet, and J.-P. Macher. Sleep stage scoring us- ing the neural network model: comparison between visual and automatic analysis in normal subjects and patients. Sleep, 19(1):26–35, 1996.
    [23] J. R. Smith, M. Negin, and A. H. Nevis. Automatic analysis of sleep electroen- cephalograms by hybrid computation. Systems Science and Cybernetics, IEEE Transactions on, 5(4):278–284, 1969.
    [24] M. Steriade. Corticothalamic resonance, states of vigilance and mentation. Neu- roscience, 101(2):243–276, 2000.
    [25] M. Steriade, D. A. McCormick, and T. J. Sejnowski. Thalamocortical oscillations in the sleeping and aroused brain. Science, 262(5134):679–685, 1993.
    [26] J. Tian and J. Liu. Automated sleep staging by a hybrid system comprising neural network and fuzzy rule-based reasoning. In Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the, pages 4115–4118. IEEE, 2006.
    [27] J. Virkkala, J. Hasan, A. V¨arri, S.-L. Himanen, and K. Mu¨ller. Automatic sleep stage classification using two-channel electro-oculography. Journal of neuroscience methods, 166(1):109–115, 2007.
    [28] C. W. Whitney, D. J. Gottlieb, S. Redline, R. G. Norman, R. R. Dodge, E. Shahar,
    S. Surovec, and F. J. Nieto. Reliability of scoring respiratory disturbance indices and sleep staging. Sleep, 21(7):749–757, 1998.

    無法下載圖示 校內:2017-08-21公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE