簡易檢索 / 詳目顯示

研究生: 邱英峰
Chiu, Ying-Feng
論文名稱: 絕緣層覆矽超絕熱方向耦合器之設計與模擬
Design and Simulation of a Counterdiabatic Directional Coupler based on SOI
指導教授: 曾碩彥
Tseng, Shuo-Yen
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 66
中文關鍵詞: 絕緣層覆矽波導耦合器
外文關鍵詞: silicon-on-insulator, waveguides, coupler
相關次數: 點閱:142下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文致力於研究絕緣層覆矽(silicon-on-insulator, SOI)超絕熱方向耦合器之理論分析與數值模擬。首先,我們介紹耦合波導系統之基本理論,並比較弱耦合波導系統與近共振電磁場下兩能階系統之量子–光學相似性,藉此將量子系統中之超絕熱協定(counterdiabatic protocol)應用到耦合波導系統中,以抵銷絕熱模態間之非絕熱耦合以避免其干擾模態轉換,如此,即使裝置長度短至無法滿足絕熱條件,也能使耦合器達到良好的功率轉換效率,亦即我們能藉由此協定設計長度更為縮減的耦合器。此外,我們著重於利用絕緣層覆矽材料以具體實現超絕熱協定之設計,因為絕緣層覆矽材料所具有的高折射率對比(high-index-contrast)特性,耦合器的長度可望更為縮減。我們藉由實際模擬的結果,驗證了超絕熱協定在絕緣層覆矽材料上之適用性。模擬結果與理論預測相符合,並顯示了絕緣層覆矽超絕熱方向耦合器在極短裝置長度下依然具有良好的寬頻特性。

    This thesis is devoted to the theoretical investigation and numerical simulations of a counterdiabatic directional coupler based on silicon-on-insulator (SOI). We begin by introducing the theory of coupled-waveguide system and the quantum‐optical analogies between weakly-coupled waveguide structure and two-level system driven by near-resonant laser light. By means of the analogies, the counterdiabatic protocol is introduced into coupled-waveguide system to cancel the nonadiabatic coupling between adiabatic modes and achieve high-fidelity power coupling even when the device length is too short to satisfy the adiabatic condition. The device length can hence be shorten. We emphasize the applicability of the counterdiabatic protocol to the SOI material system, the high-index contrast of SOI also allows devices to be more compact. The simulation results agree with the theoretical predictions, and show that the counterdiabatic coupler has the desired broadband characteristics at a short device length.

    口試合格證明書 中文摘要 i Abstract ii Acknowledgements iii Table of Contents iv List of Figures vi Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Introduction 1 1.3 Organization of the Thesis 2 Chapter 2 Theoretical Analysis 4 2.1 Theory of Coupled-Waveguide System 5 2.1.1 Eigenmode Equation for Dielectric Waveguides 5 2.1.2 EigenMode Expansion (EME) Method 9 2.1.3 Coupled-Mode Theory (CMT) 12 2.2 Analogies between Waveguide Optics and Quantum Theory 20 2.2.1 Two-Level System: Rabi Oscillations 20 2.2.2 Counterdiabatic Protocol in Quantum System 28 2.2.3 Analogies between the Waveguide Optics and Quantum Theory 31 2.2.4 The Counterdiabatic Coupler 33 2.3 Realization of Adiabatic and Counterdiabatic Couplers 36 2.3.1 Parameters 36 Chapter 3 Simulation Results and Discussion 39 3.1 Schematic of the Ridge Waveguide used for Simulation 39 3.2 The Relationships between the Coupling Coefficient and the Geometric Parameters 40 3.2.1 Coupling Coefficient 41 3.2.2 Degree of Mismatch between the Waveguides 45 3.3 Device Length Scanning 47 3.4 Bandwidth Analysis 56 3.5 Comparison with Adiabatic and Resonant Couplers 57 3.6 Discussion 60 Chapter 4 Conclusion and Perspectives 63 4.1 Conclusion 63 4.2 Perspectives 63 Reference 65

    1. X. Sun, H.-C. Liu, and A. Yariv, Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system. Optics Letters. 34(3): p. 280-282 (2009).

    2. K. Okamoto, Fundamentals of Optical Waveguides, 2nd ed. (Academic Press, New York, 2006).

    3. M. Demirplak and S. A. Rice, Adiabatic Population Transfer with Control Fields. Journal of Physical Chemistry A. 107(46): p. 9937-9945 (2003).

    4. S.-Y. Tseng, Counterdiabatic mode-evolution based coupled-waveguide devices. Optics Express. 21(18): p. 21224-21235 (2013).

    5. T.-Y. Lin, F.-C. Hsiao, Y.-W. Jhang, C. Hu, and S.-Y. Tseng, Mode conversion using optical analogy of shortcut to adiabatic passage in engineered multimode waveguides. Optics Express. 20(21): p. 24085-24092 (2012).

    6. A. M. Prabhu, A. Tsay, Z. Han, and V. Van, Ultracompact SOI microring add-drop filter with wide bandwidth and wide FSR. IEEE Photonics Technology Letters. 21(10): p. 651-653 (2009).

    7. S. Longhi, Quantum-optical analogies using photonic structures. Laser & Photonics Reviews. 3(3): p. 243-261 (2009).

    8. R. G. Unanyan, L. P. Yatsenko, K. Bergmann, and B. W. Shore, Laser-induced adiabatic atomic reorientation with control of diabatic losses. Optics Communications. 139(1–3): p. 48-54 (1997).

    9. M. Demirplak and S. A. Rice, Assisted Adiabatic Passage Revisited†. Journal of Physical Chemistry B. 109(14): p. 6838-6844 (2005).

    10. M. V. Berry, Transitionless quantum driving. Journal of Physics A: Mathematical and Theoretical. 42(36): p. 365303 (2009).

    11. X. Chen, I. Lizuain, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga, Shortcut to Adiabatic Passage in Two- and Three-Level Atoms. Physical Review Letters. 105(12): p. 123003 (2010).

    12. S.-Y. Tseng, Development of linear and nonlinear components for integrated optical signal processing. Ph.D. dissertation (University of Maryland, College Park, USA, 2006).

    13. T. E. Murphy, Design, fabrication and measurement of integrated Bragg grating optical filters. Ph.D. dissertation (Massachusetts Institute of Technology, USA, 2000).

    14. C.-L. Xu, W.-P. Huang, M. S. Stern, and S. K. Chaudhuri, Full-vectorial mode calculations by finite difference method. IEE Proceedings - Optoelectronics. 141(5): p. 281-286 (1994).

    15. W.-P. Huang and C.-L. Xu, Simulation of three-dimensional optical waveguides by a full-vector beam propagation method. IEEE Journal of Quantum Electronics. 29(10): p. 2639-2649 (1993).

    16. D. F. G. Gallagher and T. P. Felici, Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons. Proceedings of SPIE. 4987: p. 69-82 (2003).

    17. W.-P. Huang, Coupled-mode theory for optical waveguides: an overview. Journal of the Optical Society of America A. 11(3): p. 963-983 (1994).

    18. N. V. Vitanov, T. Halfmann, B. W. Shore, and K. Bergmann, Laser-induced population transfer by adiabatic passage techniques. Annual Review of Physical Chemistry. 52(1): p. 763-809 (2001).

    19. K. Bergmann, H. Theuer, and B. W. Shore, Coherent population transfer among quantum states of atoms and molecules. Reviews of Modern Physics. 70(3): p. 1003-1025 (1998).

    20. S. K. Korotky, Three-space representation of phase-mismatch switching in coupled two-state optical systems. IEEE Journal of Quantum Electronics. 22(6): p. 952-958 (1986).

    21. S. Ibáñez, X. Chen, E. Torrontegui, J. G. Muga, and A. Ruschhaupt, Multiple Schrödinger Pictures and Dynamics in Shortcuts to Adiabaticity. Physical Review Letters. 109(10): p. 100403 (2012).

    22. R. R. A. Syms, The digital directional coupler: improved design. IEEE Photonics Technology Letters. 4(10): p. 1135-1138 (1992).

    23. K. Jinguji, N. Takato, A. Sugita, and M. Kawachi, Mach–Zehnder interferometer type optical waveguide coupler with wavelength-flattened coupling ratio. Electronics Letters. 26(17): p. 1326-1327 (1990).

    24. X. Xiong, C.-L. Zou, X.-F. Ren, and G.-C. Guo, Integrated polarization rotator/converter by stimulated Raman adiabatic passage. Optics Express. 21(14): p. 17097-17107 (2013).

    下載圖示 校內:2016-07-24公開
    校外:2016-07-24公開
    QR CODE