| 研究生: |
蔣忠潔 Chiang, Chung-chieh |
|---|---|
| 論文名稱: |
以螯合劑聯合水熱法製備黃銅礦之研究 Synthesis of chalcopyrite using combined chelating agent and hydrothermal process |
| 指導教授: |
雷大同
Ray, Dah-Tong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 黃銅礦、硫銦銅礦、螯合、水熱法 |
| 外文關鍵詞: | chalcopyrite, roquesite, hydrothermal synthesis, chelation |
| 相關次數: | 點閱:80 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
黃銅礦(CuFeS2)為正方晶系之礦物,具衍生之閃鋅礦結構,為半導體材料,其能隙寬度為0.6 eV,為直接能隙半導體,在190 K以下具鐵氧磁性,在190 K至823 K之間為反鐵磁性。將In、Ga等離子取代Fe,Se取代S,若適當調整計量比可獲得不同能隙寬度之光電材料,是優良之太陽能電池原料。
硫銅銦礦具黃銅礦結構為光電半導體,其能隙寬度為1.5 eV,接近理想太陽能電池之能隙寬度1.4~1.5 eV,可吸收大部分之紅外光與可見光,硫銅銦礦為直接能隙半導體,價電帶電子不需藉由動量轉換即可躍遷至傳導帶,減少不必要之能量損失,可更完整的將光能轉換為電能。
本研究以CuCl、FeCl3•6H2O及(NH4)2S作為原料,以檸檬酸為螯合劑,進行水熱反應,結果顯示:在未添加檸檬酸或添加量不足的條件下,水熱反應除黃銅礦外,會產生成其它雜相,在檸檬酸超過當量以上時,則能有效螯合Fe3+及Cu+,可使雜相大致消除,幾乎生成單一之黃銅礦;銅藍及黃鐵礦不易以控制反應溫度及檸檬酸添加量等方法消除,藉由調整Fe/Cu比,使Fe/Cu比在當量以下(約0.9),可有效消除黃鐵礦;在130℃進行水熱反應,即有黃銅礦出現,隨著反應溫度的提高,黃銅礦之生成量越多,180℃黃銅礦達到最佳;增長反應時間可將反應中出現之雜相,如黃銨鐵礬、雅硫銅礦及黃氫鐵礬等消除,有助於黃銅礦晶相之純化;水熱反應所得到之產物以Scherrer Eq.計算,粒徑約為15 nm。以合成黃銅礦之最佳條件,調整pH 值至1~3之間可得硫銦銅礦,合成之硫銦銅礦經UV-Vis分光光度測定,能隙寬度約為1.5 eV與硫銦銅礦理論值符合。
關鍵字:黃銅礦、硫銦銅礦、螯合、水熱法
Chalcopyrite (CuFeS2) is a mineral of tetragonal system. It has a derived structure of sphalerite. Chalcopyrite is a semiconductor material, with a direct band gap of 0.6 eV. Between 190-823 K, chalcopyrite is antiferromagnetic and Below 190 K, ferrimagnetic.
Roquesite(CuInS2), formed by replacing Fe by In, is isostructural with chalcopyrite. It is also a photoelectric semiconductor, having a band gap of 1.5 eV, which is close to the requirement of 1.4~1.5 eV for ideal solar cells. Thus roquesite is able to absorb most of the infrared and visible light. Roquesite is a direct band gap semiconductor, the transition of the electrons in valence band to the conduction band does not need momentum exchange. By reducing unnecessary energy loss it can convert more light energy to electricity.
In this study, CuCl, FeCl3•6H2O and (NH4)2S were mixed with citric acid in the hydrothermal reaction. The results showed: under the conditions of no or insufficient citric acid, the hydrothermal products include, besides chalcopyrite, a lot impurity phases. When the addition of citric acid exceeds the required amount, it seems that chelation of Fe3+and Cu+ can be achieved and most of the impurity phases disappear, producing almost unique chalcopyrite. Covellite and pyrite phases cannot be removed completely by changing the reaction temperature or citric acid addition. It is found that by the adjustment of Fe/Cu ratio to about 0.9 can effectively avoid the generation of pyrite.
Chalcopyrite is already formed at the temperature of 130℃. With the raising of reaction temperature, the formation of chalcopyrite increases and reaches the optimum at 180℃. By increasing duration of reaction, many intermediate phases, such as ammoniojarosite, yarrowite, hydroniumjarosite and so on, can be eliminated and the phase of chalcopyrite can be purified. Using Scherrer Eq., the crystal size of chalcopyrite is calculated to be about 15 nm.
The optimum conditions used for chalcopyrite experiment were taken in the roquesite synthesis at pH values of 1 and 3 and was proved to be successful by XRD results. The UV-Vis spectrophotometry tests showed that the band gap is about 1.5 eV, which is consistant with theoretical value of roquesite.
Key word:chalcopyrite, roquesite, chelation, hydrothermal synthesis
1楊德仁,太陽能電池材料,五南圖書出版社,台北市,2008年。
2經濟部太陽光發電示範系統資訊網:http://210.69.121.54/moea/Docs/index.html
3.中華太陽能聯誼會:http://www.solar-i.com/know.html
4.翁榮洲,” CIGS太陽能電池的發展與未來,”工業材料雜誌,264期 (2008年)。
5.能源研究歐洲學院: http://www.eifer.uni-karlsruhe.de/162.php
6.利宗倫,以溶熱法合成Ⅰ-Ⅲ-Ⅵ 族CuInS2 奈米粒子及其特性探討,國立成功大學碩士論文 (2008年)。
7.黃昆平, ”單接面薄膜太陽能電池轉換效率之提升,” 機械工業雜誌,314期 (2009年)。
8.Shuey, R.T., ”Semiconducting ore minerals,” Elsevier scientific publishing company, New York (1975).
9.莊嘉琛,太陽能工程-太陽能電池篇,全華圖書股份有限公司,台北縣 (2008年)。
10.田民波,薄膜技術與薄膜材料,五南圖書出版社,台北市 (2007年)。
11.林民獻,太陽電池技術入門,全華圖書股份有限公司,台北縣 (2007年)。
12.黃惠良,蕭錫鍊,周明奇,林堅楊,江雨龍,李威儀,曾百亨,李世昌及林唯芳,太陽電池,五南書局,台北市 (2008年)。
13.Klein, C., and Hurlbut, C.S., Jr., Manual of mineralogy Revised 21st Ed., John Wiley & Sons Inc, New York (1999).
14.經濟部礦務局:http://www.mine.gov.tw/Bible/ViewMineral.asp?view=m17
15.Rais, A., “Magnetic properties of natural chalcopyrite at low temperature, Materials Letters,” Vol.46, pp. 349–353 (2000).
16.Wang, M.X., “Single crystal of CuFeS2 nanowires synthesized through solventothermal process,” Materials Chemistry and Physics, vol.115, pp. 147–150 (2009).
17.Charles, K., Introduction to solid state physics, John Wiley and Sons, Inc., New York (1996).
18.張立德及牟季美,奈米材料和奈米結構,滄海書局,台中市 (2002年)。
19.Jacobo, A.G., "Characterisation of CuInS2 films for solar cell applications by Raman Spectroscopy,” Enginyeriai Tecnologia Electrònica, Barcelona (2002).
20.材料分析,汪健民主編,民全書局,台北市 (2004年)。
21.Ali, H.R., " Electronic structure, linear, nonlinear optical susceptibilities and birefringence of CuInX2 (X = S, Se, Te)chalcopyrite-structure compounds,” PMC Physics B (2008).
22.Dickerson, R.E., H. B. Gray and G. P. Haight, Jr., Chemical principles(化學原理, 楊寶旺, 楊美惠及辛淑琴譯), 東華書局, 台北市 (1981年)。
23.Postnikov, A.V., “Lattice dynamics and stability of CuInSe2,” Thin Solid Films, Vol.451–452, pp. 141–144 (2004).
24.塗布加工技術,行政院國家科學委員會:http://web1.nsc.gov.tw/ct.aspx?xItem=8574&ctNode=40&mp=1
25.李正中,薄膜光學與鍍膜技術第四版,藝軒圖書出版社,台北市 (2004年)。
26.麻蒔立男著,陳克紹及曹永偉譯,薄膜技術,金文圖書有限公司,台北市 (1986年)。
27.Yoshihiro, H., Thin-film solar cells : next generation photovoltaics & its applications, Springer, Berlin (2003).
28.Kakihana, M., Milanova, M., M. Arima, Okubo, T., Yashima, M., and Yoshimura, M., “Polymerized Complex Route to Synthesis of Pure Y2Ti2O7 at 750℃ Using Yttrium-Titanium Mixed-Metal Citric Acid Complex,” Journal of the American ceramic society,, 79
29.Pechini, M.P., “Barium titanium citrate, barium titanate and processes for producing same,” U.S. Patent., no.3231328 (1966).
30.Walton, R.I., “Subcritical solvothermal synthesis of condensed inorganic materials,” chemical ociety. Rev., Vol.31, pp.230-238 (2002).
31.Morey, G.M., “Hydrothermal synthesis,” Journal of the American ceramic society, vol.36, no.9, pp.279-285 (1953).
32.余樹楨,晶體之結構與性質,渤海堂文化公司,台北市 (2000年)。
33.Oja, I., “Crystal quality studies of CuInS2 films prepared by spray pyrolysis,” Thin Solid Films, vol.480–481, pp.82–86 (2005).
34.Terezia, N., ” Experimental and numerical results in hydrothermal synthesis of CuInS2 compound semiconductor nanocrystals," Journal of Crystal Growth, vol.275, pp. 2383–2387 (2005).
35.Hu, J., ”Hydrothermal preparation and characterization of Nanocrystalline Silver gallium sulfides," Solid State Sciences, vol.3, pp. 275–278 (2001).
36.Hu, J., ”A hydrothermal reaction to synthesize CuFeS2 nanorods,” Inorganic Chemistry Communications, vol.2, pp.569–571 (1999).
37.Hu, J., ” A solvothermal reaction route for the synthesis of CuFeS2 ultrafine powder,” J. Mater. Res., vol.14, no.10 (1999).
38.Peng, S., ” Shape-controlled synthesis and optical characterization of chalcopyrite CuInS2 microstructures,” Journal of Crystal Growth, vol.305, pp.99–103 (2007).
39.Brakat, L.,”Growth and characterization of CuFeS2 thin films” J.Crys.Growth, vol.197, pp.426-431 (2006).
40.Lee, S.Y., “CuInS2 thin films deposited by sol–gel spin-coating method,” Thin Solid Films, vol.516, pp.3862–3864 (2008).
41.Cullity, B.D., Stock, S. R., Elements of X-ray Diffraction, Prentice Hall, New Jersey (2001).
42.曾永志,黃美純, "黃銅礦半導體DMS 的第一原理計算,” 廈門大學學報(自然科學版),vol.44,,no. 2 (2005年3月)。
43.Cullity, B.D., Stock, S.R., Elements of X-Ray Diffraction 3rd Ed., Prentice-Hall Inc., pp.167-171 (2001).
44.Shuey, R.T., Semiconducting ore minerals, Elsevier Scientific Publishing Company, New York (1975).
45.Frost, R.L., Inorganic Materials Research Program, Analytica Chimica Acta (2004).
46.Ray, L.F., Wayde, M., Kloprogge, J.T., and Peter A.W., " Raman spectroscopy of the basic copper chloride minerals atacamite and paratacamite - implications for the study of copper, brass and bronze objects of archeological significance," Journal of Raman Spectroscopy, vol.33(10), pp.801-806 (2002).
47.George, S., Infrared and Raman characteristic group frequencies, John Wiley & Sons, Inc., New York (2001).
48.王敏昭及王明光編著,實用儀器分析,合記圖書,台北市 (2003年)。
49.Leandro, M., ” Thermo chemical data on adducts of copper chloride with the amino acids lysine and glycine,” Thermo Chemical Acta, vol.395, pp.21–26 (2003).
50.Palacios, E.G., ” Infrared spectroscopy of metal carboxylates: II. Analysis of Fe(III), Ni and Zn carboxylate solutions ” Hydrometallurgy, vol.72, pp. 139–148 (2004).
51.Chemical Abstracts Service,黃大正及李大鵬編,五洲出版社,台北市 (1972年)。
52.Das, G.K., “Preparation and decomposition of ammoniojarosite at elevated temperatures in H2O-( NH4)SO4-H2SO4 media,” Hydrometallurgy, vol.38, pp. 263-276 ( 1995).