| 研究生: |
葉玉婷 Yeh, Yu-Ting |
|---|---|
| 論文名稱: |
生物可分解聚酯高分子之晶核與球晶形貌相關性及內部晶板組裝之剖析 Anatomy into Lamellar Assembly in Nuclei-Dependent Spherulitic Morphologies of Biodegradable Polyesters |
| 指導教授: |
吳逸謨
Woo, Ea-Mor |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 左式聚乳酸 、聚羥基丁酸酯共聚羥基戊酸酯 、生物可分解性高分子 、形貌 、球核 、結晶 、球晶 |
| 外文關鍵詞: | PLLA, PHBV, biodegradable polymer, morphology, nuclei, crystallization, spherulites |
| 相關次數: | 點閱:101 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用偏光顯微鏡(POM)、電子顯微鏡(SEM)、原子力顯微鏡(AFM)、廣角X光繞射儀(WAXD)及微分掃描熱卡計(DSC)分別探討生物可分解性高分子左式聚乳酸(PLLA)、聚羥基丁酸酯共聚羥基戊酸酯(PHBV),兩者分別摻合了聚丙二醇己二酸酯(PTA)及聚對位乙烯基酚(PVPh)後的結晶行為。第一部分是PLLA/PTA摻合系統,首先改變組成比例、結晶溫度(Tc)或膜厚以POM進行球晶形貌的初步觀察,而最後選擇50/50的組成比例做進一步的分析,並發現在不同結晶溫度(Tc)會有不同的形貌,主要分為三種:在Tc = 105 °C所產生的ring-banded spherulite (稱之Type 1);在Tc = 115 °C同時共存的hexagon-shaped spherulite (稱之Type 2)及core-striped spherulite (稱之Type 3),並記錄三種type的球晶形貌各階段生長情形,接著利用SEM針對剛長出來的球核及最終完全長完的球晶(fully crystallized)做進一步的分析,並探討球晶上表面及內部晶板的排列與推測其生長機制。第二部分為PHBV/PVPh (90/10)摻合系統,同樣以POM初步觀察球晶形貌,發現在一特定的Tc會同時共存三種結晶形貌:right Fermat’s spiral spherulite (稱之Type 1);left Fermat’s spiral spherulite (稱之Type 2)及concentric ring-banded spherulite (稱之Type 3),最後再結合SEM及AFM的結果分析三種不同螺旋狀的球晶其球核不同之處與晶板排列的關聯性。透過本研究的鑑定,可以了解球核的圖形會與球晶形貌有著密不可分的關係,且晶板應是以柵狀、不連續的晶板排列而構成,而非傳統觀念的連續性晶板扭轉所組成。
Multiple types of crystalline morphology are presented in biodegradable poly(L-lactic acid) (PLLA) and poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV), upon blending with poly(trimethylene adipate) (PTA) with 50/50 composition and poly(4-vinyl phenol) (PVPh) with 90/10 composition, respectively.
PLLA/PTA (50/50) blend system shows three different types of spherulites: circularly ringed (Type 1), hexagon-shaped (Type 2) and circularly core-striped (Type 3). Such morphological phenomena originate from three different nuclei geometries. In addition, we also utilize scanning electron microscopy (SEM) to observe the fractured surface in order to explore the inner lamellar arrangement. For all three types of spherulites, the dissected inner lamellar arrangement shares commonality of intersecting at 60-degrees angle in the boundary of transition between different lamellar species.
PHBV/PVPh (90/10) blend system also shows three different types of spherulites: right Fermat’s spiral spherulite (Type 1), left Fermat’s spiral spherulite (Type 2) and concentric ring-banded spherulite (Type 3). We take advantage of SEM and atomic-force microscopy (AFM) to analyze the lamellar arrangement of the center of the spherulites.
[1] H. F. Talbot, "On the optical phenomena of certain crystals," Philosophical Transactions of the Royal Society of London, 127, 25-27, 1837.
[2] D. Brewster, "XLIII.—On Circular Crystals," Earth and Environmental Science Transactions of The Royal Society of Edinburgh, 20, 4, 607-623, 1853.
[3] G. Browne and D. Kingston, "Early diagenetic spherulitic siderites from Pennsylvanian palaeosols in the Boss Point Formation, Maritime Canada," Sedimentology, 40, 3, 467-474, 1993.
[4] F. Bernauer and G. Kristalle, "Gebrüder Borntraeger," Berlin, Germany, 1929.
[5] J. Eshelby, "Screw dislocations in thin rods," Journal of Applied Physics, 24, 2, 176-179, 1953.
[6] J. Schultz and D. Kinloch, "Transverse screw dislocations: A source of twist in crystalline polymer ribbons," Polymer, 10, 271-278, 1969.
[7] A. Toda, T. Arita, M. Hikosaka, J. K. Hobbs, and M. J. Miles, "An atomic force microscopy observation of poly(vinylidene fluoride) banded spherulites," Journal of Macromolecular Science, Part B, 42, 3-4, 753-760, 2003.
[8] J. M. Schultz, "Self-induced field model for crystal twisting in spherulites," Polymer, 44, 2, 433-441, 2003.
[9] A. Toda, K. Taguchi, and H. Kajioka, "Instability-driven branching of lamellar crystals in polyethylene spherulites," Macromolecules, 41, 20, 7505-7512, 2008.
[10] A. Toda, M. Okamura, K. Taguchi, M. Hikosaka, and H. Kajioka, "Branching and higher order structure in banded polyethylene spherulites," Macromolecules, 41, 7, 2484-2493, 2008.
[11] B. Lotz and S. Z. Cheng, "A critical assessment of unbalanced surface stresses as the mechanical origin of twisting and scrolling of polymer crystals," Polymer, 46, 3, 577-610, 2005.
[12] Y. O. Punin and A. Shtukenberg, "Autodeformation defects in crystals," St. Petersburg University Press: St. Petersburg, Russia, 2008.
[13] T. Ikehara and T. Kataoka, "Relation between the helical twist and S-shaped cross section of the lamellar crystals of polyethylene," Scientific Reports, 3, 1444, 2013.
[14] M. Kunz, M. Drechsler, and M. Möller, "On the structure of ultra-high molecular weight polyethylene gels," Polymer, 36, 7, 1331-1339, 1995.
[15] R.M. Ho, K.Z. Ke, and M. Chen, "Crystal structure and banded spherulite of poly (trimethylene terephthalate)," Macromolecules, 33, 20, 7529-7537, 2000.
[16] B. Wang, C. Y. Li, J. Hanzlicek, S. Z. Cheng, P. H. Geil, J. Grebowicz, and R.-M. Ho, "Poly(trimethylene teraphthalate) crystal structure and morphology in different length scales," Polymer, 42, 16, 7171-7180, 2001.
[17] M. Rosenthal, G. Portale, M. Burghammer, G. Bar, E. T. Samulski, and D. A. Ivanov, "Exploring the origin of crystalline lamella twist in semi-rigid chain polymers: the model of Keith and Padden revisited," Macromolecules, 45, 18, 7454-7460, 2012.
[18] S. Nurkhamidah and E. M. Woo, "Unconventional Non‐birefringent or Birefringent Concentric Ring‐Banded Spherulites in Poly(L‐lactic acid) Thin Films," Macromolecular Chemistry and Physics, 214, 6, 673-680, 2013.
[19] E. M. Woo, L.Y. Wang, and S. Nurkhamidah, "Crystal lamellae of mutually perpendicular orientations by dissecting onto interiors of poly(ethylene adipate) spherulites crystallized in bulk form," Macromolecules, 45, 3, 1375-1383, 2012.
[20] G. Lugito and E. M. Woo, "Interior lamellar assembly in correlation to top-surface banding in crystallized poly(ethylene adipate)," Crystal Growth & Design, 14, 10, 4929-4936, 2014.
[21] E. M. Woo, K.C. Yen, Y.T. Yeh, and L.Y. Wang, "Biomimetically Structured Lamellae Assembly in Periodic Banding of Poly(ethylene adipate) Crystals," Macromolecules, 2018. DOI: 10.1021/acs.macromol.8b00549
[22] G. G. Niederauer, M. A. Slivka, N. C. Leatherbury, D. L. Korvick, H. H. Harroff Jr, W. C. Ehler, C. J. Dunn, and K. Kieswetter, "Evaluation of multiphase implants for repair of focal osteochondral defects in goats," Biomaterials, 21, 24, 2561-2574, 2000.
[23] A. Merolli, C. Gabbi, A. Cacchioli, L. Ragionieri, L. Caruso, L. Giannotta, and P. T. Leali, "Bone response to polymers based on poly-lactic acid and having different degradation times," Journal of Materials Science: Materials in Medicine, 12, 9, 775-778, 2001.
[24] H. Yamane and K. Sasai, "Effect of the addition of poly(D-lactic acid) on the thermal property of poly(L-lactic acid)," Polymer, 44, 8, 2569-2575, 2003.
[25] H. Tsuji and I. Fukui, "Enhanced thermal stability of poly(lactide) s in the melt by enantiomeric polymer blending," Polymer, 44, 10, 2891-2896, 2003.
[26] T. Shirahase, Y. Komatsu, Y. Tominaga, S. Asai, and M. Sumita, "Miscibility and hydrolytic degradation in alkaline solution of poly(L-lactide) and poly(methyl methacrylate) blends," Polymer, 47, 13, 4839-4844, 2006.
[27] M. L. Focarete, M. Scandola, P. Dobrzynski, and M. Kowalczuk, "Miscibility and mechanical properties of blends of (L)-lactide copolymers with atactic poly(3-hydroxybutyrate)," Macromolecules, 35, 22, 8472-8477, 2002.
[28] L. Malinová and J. Brožek, "Mixtures poly((R)-3-hydroxybutyrate) and poly(l-lactic acid) subjected to DSC," Journal of thermal analysis and calorimetry, 103, 2, 653-660, 2010.
[29] A. Nijenhuis, E. Colstee, D. Grijpma, and A. Pennings, "High molecular weight poly(L-lactide) and poly(ethylene oxide) blends: thermal characterization and physical properties," Polymer, 37, 26, 5849-5857, 1996.
[30] Y. T. Hsieh, N. T. Kuo, and E. M. Woo, "Thermal analysis on phase behavior of poly(l-lactic acid) interacting with aliphatic polyesters," Journal of thermal analysis and calorimetry, 107, 2, 745-756, 2011.
[31] W. K. Lee, J. K. Lee, and C. S. Ha, "Growth of monolayered poly(l—lactide) lamellar crystals on a substrate," Macromolecular research, 11, 6, 511-513, 2003.
[32] Y. Kikkawa, H. Abe, T. Iwata, Y. Inoue, and Y. Doi, "Crystallization, stability, and enzymatic degradation of poly(L-lactide) thin film," Biomacromolecules, 3, 2, 350-356, 2002.
[33] S. Nurkhamidah and E. M. Woo, "Correlation of crack patterns and ring bands in spherulites of low molecular weight poly(L-lactic acid)," Colloid and Polymer Science, 290, 3, 275-288, 2012.
[34] E. M. Woo, G. Lugito, J.H. Tsai, and A. J. Müller, "Hierarchically diminishing chirality effects on lamellar assembly in spherulites comprising chiral polymers," Macromolecules, 49, 7, 2698-2708, 2016.
[35] H.P. Chen and E. M. Woo, "Dendritic lamellar assembly in solution-cast poly(L-lactic acid) spherulites," CrystEngComm, 19, 40, 6002-6007, 2017.
[36] S. Nurkhamidah and E. M. Woo, "Phase-separation-induced single-crystal morphology in poly(l-lactic acid) blended with poly(1, 4-butylene adipate) at specific composition," The Journal of Physical Chemistry B, 115, 45, 13127-13138, 2011.
[37] H. Ni'mah and E. M. Woo, "A novel hexagonal crystal with a hexagonal star-shaped central core in poly(L-lactide) (PLLA) induced by an ionic liquid," CrystEngComm, 16, 23, 4945-4949, 2014.
[38] S. Nurkhamidah and E. M. Woo, "Mechanisms of Multiple Types of Lamellae and Spherulites in Poly(l‐lactic acid) Interacting with Poly(4‐vinyl phenol)," Macromolecular Chemistry and Physics, 214, 20, 2345-2354, 2013.
[39] E. M. Woo, H. Ni’mah, and Y.H. Wang, "Anisotropic Nucleation and Janus-Faced Crystals of Poly(l-lactic acid) Interacting with an Amorphous Diluent," Industrial & Engineering Chemistry Research, 53, 23, 9772-9780, 2014.
[40] J. Zhang, L. Li, S. Song, H. Feng, P. Chen, Z. Wang, and Q. Gu, "Synchronous architecture of ring-banded and non-ring-banded morphology within one spherulite based on in situ ring-opening polymerization of cyclic butylene terephthalate oligomers," RSC Advances, 6, 97, 94524-94530, 2016.
[41] G. Lugito and E. M. Woo, "Asymmetric Growth of Co-Crystallized Nano-and Micrometer-Sized Lamellae to Janus-Faced Spherulites in Poly(l-lactic acid) with Amorphous Poly(methyl methacrylate)," Crystal Growth & Design, 17, 10, 5034-5037, 2017.
[42] P. De Santis and A. Kovacs, "Molecular conformation of poly(S‐lactic acid)," Biopolymers, 6, 3, 299-306, 1968.
[43] T. Lin, "Structure-property relationship of crystalline poly(lactic acid)s: DFT/DFPT studies and applications," 2011.
[44] B. Eling, S. Gogolewski, and A. Pennings, "Biodegradable materials of poly(l-lactic acid): 1. Melt-spun and solution-spun fibres," Polymer, 23, 11, 1587-1593, 1982.
[45] L. Cartier, T. Okihara, Y. Ikada, H. Tsuji, J. Puiggali, and B. Lotz, "Epitaxial crystallization and crystalline polymorphism of polylactides," Polymer, 41, 25, 8909-8919, 2000.
[46] J. Zhang, Y. Duan, H. Sato, H. Tsuji, I. Noda, S. Yan, and Y. Ozaki, "Crystal modifications and thermal behavior of poly(L-lactic acid) revealed by infrared spectroscopy," Macromolecules, 38, 19, 8012-8021, 2005.
[47] T. Kawai, N. Rahman, G. Matsuba, K. Nishida, T. Kanaya, M. Nakano, H. Okamoto, J. Kawada, A. Usuki, and N. Honma, "Crystallization and melting behavior of poly(L-lactic acid)," Macromolecules, 40, 26, 9463-9469, 2007.
[48] J. P. Kalish, K. Aou, X. Yang, and S. L. Hsu, "Spectroscopic and thermal analyses of α′ and α crystalline forms of poly(l-lactic acid)," Polymer, 52, 3, 814-821, 2011.
[49] R. Androsch and M. L. Di Lorenzo, "Effect of molar mass on the α′/α-transition in poly(l-lactic acid)," Polymer, 114, 144-148, 2017.
[50] H. Marubayashi, S. Asai, and M. Sumita, "Complex crystal formation of poly(l-lactide) with solvent molecules," Macromolecules, 45, 3, 1384-1397, 2012.
[51] M. Lemoigne, "Produits de dehydration et de polymerisation de l’acide ß-oxobutyrique," Bull Soc Chim Biol, 8, 770-782, 1926.
[52] Y. Jiang, J. J. Zhou, L. Li, J. Xu, B. H. Guo, Z. M. Zhang, Q. Wu, G. Q. Chen, L. T. Weng, and Z. L. Cheung, "Surface properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) banded spherulites studied by atomic force microscopy and time-of-flight secondary ion mass spectrometry," Langmuir, 19, 18, 7417-7422, 2003.
[53] J. Hobbs, T. McMaster, M. Miles, and P. Barham, "Direct observations of the growth of spherulites of poly(hydroxybutyrate-co-valerate) using atomic force microscopy," Polymer, 39, 12, 2437-2446, 1998.
[54] H. Yu, M. Zhu, Y. Zhang, and Y. Chen, "Mechanism of the formation of concentric ring-like patterns on PHBV spherulites," Polymer-Plastics Technology and Engineering, 43, 1, 1-15, 2004.
[55] C.C. Su, E. M. Woo, and Y.T. Hsieh, "Perpendicularly oriented lamellae in poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) blended with an amorphous polymer: ultra-thin to thick films," Physical Chemistry Chemical Physics, 15, 7, 2495-2506, 2013.
[56] "http://www.infinity-theory.com/en/science/Main_pages/The_
Transformation_Sequence."
[57] "http://matemaatikast.blogspot.com/2012/03/heeliks-ja-helikoid.html."
[58] "https://en.wikipedia.org/wiki/Archimedean_spiral#General_
Archimedean_spiral."
[59] "https://pierredefermatcb.weebly.com/mathematical-contributions-legacy.html."
[60] "https://en.wikipedia.org/wiki/Fermat%27s_spiral."
[61] "https://en.wikipedia.org/wiki/Golden_spiral#Approximations_of_the_
golden_spiral."
[62] Y. Okabe, T. Kyu, H. Saito, and T. Inoue, "Spiral crystal growth in blends of poly(vinylidene fluoride) and poly(vinyl acetate)," Macromolecules, 31, 17, 5823-5829, 1998.
[63] G. Lugito and E. M. Woo, "Three types of banded structures in highly birefringent poly (trimethylene terephthalate) spherulites," Journal of Polymer Science Part B: Polymer Physics, 54, 13, 1207-1216, 2016.
[64] W. Bryant, R. Pierce, C. Lindegren, and R. Roberts, "Nucleation and growth of crystallites in high polymers. Formation of spherulites," Journal of Polymer Science Part A: Polymer Chemistry, 16, 82, 131-142, 1955.
[65] G. Schuur, "Mechanism of the crystallization of high polymers," Journal of Polymer Science Part A: Polymer Chemistry, 11, 5, 385-398, 1953.
[66] 郭乃慈, "生物可分解聚乳酸與其他聚酯高分子作用下之相行為、結晶型態及動力分析," 成功大學化學工程學系學位論文, 1-89, 2010, Tainan, Taiwan.
校內:2023-07-01公開