| 研究生: |
林治宏 Lin, Jhih-hong |
|---|---|
| 論文名稱: |
發展以銬型電極量測多頻率阻抗的無線植入式生醫微系統 Development of Wireless Biomicrosystem for Measuring Impedance Spectroscopy by Implanted Cuff Electrode |
| 指導教授: |
陳家進
Chen, Jia-Jin Jason |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 33 |
| 中文關鍵詞: | 無線傳輸 、銬型電極 、可植入式生醫微系統 、阻抗量測 |
| 外文關鍵詞: | Implantable biomicrosystem, Impedance measurement, Wireless transmission, Cuff electrode |
| 相關次數: | 點閱:116 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在神經義肢的應用裡,銬型電極已經被提供來作周邊神經的電刺激以及訊號感測的使用。為了有效性的感測和達到刺激目的,對於植入式電極的阻抗量測是相當重要的。研究目標為實現一個藉由磁場耦合進行無線傳輸的可植入式生醫微系統,用以量測植入式銬型電極阻抗。為了要在體內進行長時間的阻抗值的測量,我們採用的是以在皮質上層用磁場耦合的方法來傳送電能與指令進入到內部的模組中,並讓其可回傳出所測得的阻抗值。由於是阻抗的量測,所謂的二極式和四極式的方法被吾人採行,用以在銬型電極和電極與組織間介面的阻抗作測量。而為了避免需要高取樣率,我們利用增益與相位偵測器(a gain-phase detector)可以直接輸出所測量到的阻抗值之大小與相位偏移值。研究中首先進行的有效性測試為將阻抗的量測以模型包括一個電阻並聯一個電容表示,而後再進行將完整的植入式無線生醫微系統與銬型電極一同浸泡在食鹽水溶液中的實驗。測量到的數據與精確LCR量測計比較所得的相對誤差是小於10%。在體外的食鹽水測試後,生醫微系統可以進行急性的植入動物體內的實驗。而整個可植入式的裝置也已經可以在紐西蘭大白兔體內進行長時間的動物實驗監測。
In neural prosthetic applications, cuff electrodes have been utilized for providing peripheral nerve electrical stimulation and signal sensation. It is imperative for monitoring the impedance of implantable cuff electrode for the effective sensing and stimulating schemes. This study aimed to implement an implantable wireless biomicrosystem for measuring the implanted cuff electrode impedance via a magnetic-inductive link. For continuous in vivo impedance monitoring, a transcutaneous magnetic coupling technique was adopted for transmitting power and command into the internal module and transmitting outwards the impedance measurement. For impedance measurement, the two-terminal and four-terminal methods were adopted for impedance measurement of the cuff electrode and electrode-tissue interfacing impedance. To avoid high sampling rate required, a gain-phase detector was utilized for direct output of the magnitude and phase shift of impedance measurement. Validation tests of impedance measurement was first performed in an impedance model of resistor in parallel with capacitor and later by immersing the entire implantable wireless biomicrosystem with cuff electrode in NaCl saline solution. The measured impedance differences were less than 10 % in comparison with those measured by precision LCR meter. After in vitro NaCl saline solution tests, the implantable biomicrosystem was implanted for in vivo acute animal experiments. Now it is ready for the fully implantable device to be time-course study in the white New Zealand rabbit.
[1] "http://www.wimserc.org/," (Center For Wireless Integrated Microsystems (WIMS)).
[2] Y. T. Li, C. H. Chang, J. J. J. Chen, and C. C. Wang, "Development of implantable wireless biomicrosystem for measuring electrode-tussue impedance," J. Med. Biol. Eng., vol. 25, pp. 99-105, 2005.
[3] C. H. Chang, J. D. Liao, J. J. Chen, M. S. Ju, and C. C. Lin, "Alkanethiolate self-assembled monolayers as functional spacers to resist protein adsorption upon Au-coated nerve microelectrode," Langmuir, vol. 20, pp. 11656-63, Dec 21 2004.
[4] T. Stieglitz, M. Schuettler, and K. P. Koch, "Implantable biomedical microsystems for neural prostheses," IEEE Eng. Med. Biol. Mag., vol. 24, pp. 58-65, Sep-Oct 2005.
[5] W. L. Rutten, "Selective electrical interfaces with the nervous system," Annu. Rev. Biomed. Eng., vol. 4, pp. 407-52, 2002.
[6] H. S. Cheng, M. S. Ju, and C. C. Lin, "Estimation of peroneal and tibial afferent activity from a multichannel cuff placed on the sciatic nerve," Muscle Nerve, vol. 32, pp. 589-99, Nov 2005.
[7] W. M. Grill and J. T. Mortimer, "Stability of the input-output properties of chronically implanted multiple contact nerve cuff stimulating electrodes," IEEE Trans. Rehabil. Eng., vol. 6, pp. 364-73, Dec 1998.
[8] J. J. Struijk, M. Thomsen, J. O. Larsen, and T. Sinkjaer, "Cuff electrodes for long-term recording of natural sensory information," IEEE Eng. Med. Biol. Mag., vol. 18, pp. 91-8, May-Jun 1999.
[9] R. Kirsch, "Development of a neuroprosthesis for restoring arm and hand function via functional electrical stimulation following high cervical spinal cord injury," Conf. Proc. IEEE Eng. Med. Biol. Soc., vol. 4, pp. 4142-4, 2005.
[10] J. A. Hoffer, R. B. Stein, M. K. Haugland, T. Sinkjaer, W. K. Durfee, A. B. Schwartz, G. E. Loeb, and C. Kantor, "Neural signals for command control and feedback in functional neuromuscular stimulation: a review," J. Rehabil. Res. Dev., vol. 33, pp. 145-57, Apr 1996.
[11] G. G. Naples, J. T. Mortimer, A. Scheiner, and J. D. Sweeney, "A spiral nerve cuff electrode for peripheral nerve stimulation," IEEE Trans. Biomed. Eng., vol. 35, pp. 905-16, Nov 1988.
[12] G. E. Loeb and R. A. Peck, "Cuff electrodes for chronic stimulation and recording of peripheral nerve activity," J Neurosci Methods, vol. 64, pp. 95-103, Jan 1996.
[13] J. J. Ackmann, "Complex bioelectric impedance measurement system for the frequency range from 5 Hz to 1 MHz," Ann. Biomed. Eng., vol. 21, pp. 135-46, Mar-Apr 1993.
[14] A. Yúfera, A. Rueda, J. M. Muñoz, R. Doldán, G. Leger, and E. O. Rodríguez-Villegas, "A tissue impedance measurement chip for myocardial ischemai detection," IEEE Trans. Circuits Syst., vol. 52, pp. 2620-2628, 2005.
[15] C. Skourou, P. J. Hoopes, R. R. Strawbridge, and K. D. Paulsen, "Feasibility studies of electrical impedance spectroscopy for early tumor detection in rats," Physiol. Meas., vol. 25, pp. 335-46, Feb 2004.
[16] A. Molckovsky and B. C. Wilson, "Monitoring of cell and tissue responses to photodynamic therapy by electrical impedance spectroscopy," in Phys. Med. Biol. vol. 46, 2001, pp. 983-1002.
[17] C. Donfack, M. Sawan, and Y.Savaria, "Implantable measurement technique dedicated to the monitoring of electrode-nerve contact in bladder stimulator," Med. Biol. Eng. Comput., vol. 38, pp. 465-468, 2000.
[18] Y. Wang, P. H. Schimpf, D. R. Haynor, and Y. Kim, "Geometric effects on resistivity measurements with four-electrode probes in isotropic and anisotropic tissues," IEEE Trans Biomed Eng, vol. 45, pp. 877-84, Jul 1998.
[19] M. A. Thil, B. Gerard, J. C. Jarvis, V. Vince, C. Veaart, I. M. Colin, and J. Delbeke, "Tissue-electrode interface changes in the first week after spiral cuff implantation: Preliminary results," 9th Ann. Conf. IFESS., September, 2004.
[20] C. Pflaum, R. R. Riso, and G. Wiesspeiner, "Performance of alternative amplifier configurations for tripolar nerve cuff recorded ENG," 18th Ann. Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 375-376, 1996.
[21] A. Demosthenous and I. F. Triantis, "An adaptive ENG amplifier for tripolar cuff electrodes," IEEE J. Solid-state Circuits, vol. 40, pp. 412-421, 2005.
[22] P. R. Troyk and M. A. Schwan, "Closed-loop class E transcutaneous power and data link for microimplants," IEEE Trans. Biomed. Eng., vol. 39, pp. 589-99, Jun 1992.
[23] B. S. Fu, "Design of bi-directional wireless communication for implantable biomicrosystem," Master thesis, BME, NCKU, Tainan, Taiwan, 2002.
[24] Z. Tang, B. Smith, J. H. Schild, and P. H. Peckham, "Data transmission from an implantable biotelemeter by load-shiftkeying using circuit configuration modulator," IEEE Trans. Biomed. Eng., vol. 42, pp. 524 - 528, 1995.
[25] C. K. Liang, J. J. Chen, C. L. Chung, C. L. Cheng, and C. C. Wang, "An implantable bi-directional wireless transmission system for transcutaneous biological signal recording," Physiol Meas, vol. 26, pp. 83-97, Feb 2005.
[26] Y. Yang, J. Wang, G. Yu, F. Niu, and P. He, "Design and preliminary evaluation of a portable device for the measurement of bioimpedance spectroscopy," Physiol. Meas., vol. 27, pp. 1293-310, Dec 2006.
[27] H. Sanabria and J. H. Miller, Jr "Relaxation processes due to the electrode-electrolyte interface in ionic solutions," Phys. Rev. E., vol. 74, pp. 1-9, 2006.
[28] S. L. Peterson, A. McDonald, P. L. Gourley, and D. Y. Sasaki, "Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices: cell culture and flow studies with glial cells," J. Biomed. Mater. Res. A., vol. 72, pp. 10-8, Jan 1 2005.
[29] B. H. Brown, J. A. Tidy, K. Boston, A. D. Blackett, R. H. Smallwood, and F. Sharp, "Relation between tissue structure and imposed electrical current flow in cervical neoplasia," Lancet vol. 355, pp. 892-895, 2000.
[30] A. Branner, R. B. Stein, E. Fernandez, Y. Aoyagi, and R. A. Normann, "Long-term stimulation and recording with a penerating microelectrode array in cat sciatic nerve," IEEE Trans. Biomed. Eng., vol. 51, pp. 146-157, 2004.