| 研究生: |
彭奐森 Peng, Huan-Sen |
|---|---|
| 論文名稱: |
底部加熱之水平渠道內表面運動與共軛熱傳的數值模擬 Numerical Simulation of Surface Motion and Conjugate Heat Transfer in a Horizontal Channel Heated From Below |
| 指導教授: |
楊玉姿
Yang, Yue-Tzu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 紊流 、計算流體力學 、共軛熱傳 、表面運動 |
| 外文關鍵詞: | computational fluid dynamics, turbulent flow, surface motion, conjugate heat transfer |
| 相關次數: | 點閱:69 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要以數值方法探討具底部加熱之水平渠道內表面運動與共軛熱傳的影響。在數值計算的方法上,是以控制體積法為基礎,並配合有限差分法及冪次法則在正交、非等間距的交錯式格點上將各統御方程式離散成差分方程式,並且以SIMPLE法來求解動量方程式中壓力項與速度項耦合的問題;對於紊流的運動行為與結構則是以k-w雙方程紊流模式來描述。
在本文當中所討論的參數有:雷諾數(Re= 3000~9000)、加熱量(Qt= 10 kW~50 kW)或加熱溫度(Th= 600 K~1000 K)、晶座參數(S= 0~1)以及傳導比(K= 1~10)。數值計算結果顯示,表面運動與共軛熱傳對於渠道內部及晶座表面的溫度分布與均勻性有顯著的影響。當表面的運動速度加快時,會使晶座的表面溫度下降、高溫帶變窄並且向加熱區下游方向移動,熱量除了傳導之外並藉由表面運動帶往下游,使加熱段後方的表面溫度升高。而改變加熱方式也會對晶座表面溫度分布的均勻性造成影響,加熱區以定溫加熱的方式所得到的晶座表面溫度分布較定加熱量的方式來得均勻。此外,表面運動也會對紊流動能造成影響,但因為表面運動的速度相較於進口速度是相當小的,因此在靠近底部壁面區域的紊流動能只有微小的變化。
This study presents the numerical simulation of surface motion and conjugate heat transfer in a horizontal channel heated from below. The governing equations are discretized by using a Control-Volume-Based finite-difference method with power-law scheme on an orthogonal non-uniform staggered grid. The coupling of the velocity and the pressure terms of momentum equations are solved by SIMPLE (Semi-Implicit Method for Pressure-Linked Equation) algorithm. And the well-known k-w two-equation turbulence model is employed to describe the turbulent structure and behavior.
The parameters include Reynolds number (Re= 3000~9000), total heat input rate (Qt= 10 kW~50 kW) or heating temperature (Th= 600 K~1000 K), susceptor parameter (S= 0~1) and conductance ratio (K= 1~10). Surface motion and conjugate heat transfer are demonstrated to significantly affect the temperature distribution and uniformity at the channel and susceptor surface. With increasing the surface motion speed, the high temperature band becomes narrow, lower and shifts downstream toward the heating zone. Thermal energy not only conducts to the surface, but also conveys by surface motion, it leads to the surface temperature behind the heating zone increase. In addition, changing the heating manner will affect the uniformity of the temperature distribution of the susceptor surface, too. The temperature distribution of the susceptor surface above the heat zone which heated with constant heating temperature is more uniform than with constant heat input. Furthermore, the surface motion also affects the turbulent kinetic energy. But the speed of the surface compares with inlet velocity is quite low. Hence, it only causes a little effect upon the bottom wall region in the channel.
Bredberg, J., Peng, S.-H., and Davidson, L., “An Improved k-w Turbulence Model Applied to Recirculating Flows,” International Journal of Heat and Fluid Flow, vol. 23, pp. 731-743, 2002.
Chae, Y. K., Egashira, Y., Shimogaki, Y., Sugawara, K., and Komiyama, H., “Chemical Vapor Deposition Reactor Design Using Small-Scale Diagnostic Experiments Combined with Computational Fluid Dynamics Simulations,” Journal of The Electrochemical Society, vol. 146, issue 5, pp. 1780-1788, 1999.
Chiriac, V. A., and Ortega, A., “A Numerical Study of the Unsteady Flow and Heat Transfer in a Transitional Confined Slot Jet Impinging on an Isothermal Surface,” International Journal of Heat and Mass Transfer, vol. 45, pp. 1237-1248, 2001.
Chiu, W. K. S., and Jaluria, Y., “Continuous Chemical Vapor Deposition Processing With a Moving Finite Thickness Susceptor,” Journal of Material Research, vol. 15, pp. 317-328, 2000.
Chiu, W. K. S., Richards, C. J., and Jaluria, Y., “Experimental and Numerical Study of Conjugate Heat Transfer in a Horizontal Channel Heated from Below,” Journal of Heat Transfer, vol. 123, pp. 688-697, 2001.
Cho, W. K., Choi, D. H., and Kim, M.-U., “Optimization of the Inlet Velocity Profile for Uniform Epitaxial Growth in a Vertical Metalorganic Chemical Vapor Deposition Reactor,” International Journal of Heat and Mass Transfer, vol. 42, pp. 4143-4152, 1999.
Fedorov, A. G., and Viskanta, R., “Three-Dimensional Conjugate Heat Transfer in the Microchannel Heat Sink for Electronic Packaging,” International Journal of Heat and Mass Transfer, vol. 43, pp.399-415, 2000.
Gregoire, G., Marinet, M. F., and Amand, F. J. S., “Modeling of Turbulent Fluid Flow Over a Rough Wall With or Without Suction,” Journal of Fluids Engineering, vol. 125, pp. 636-642, 2003.
Kim, I.-K., and Kim, W.-S., “Theoretical Analysis of Wafer Temperature Dynamics in a Low Pressure Chemical Vapor Deposition Reactor,” International Journal of Heat and Mass Transfer, vol. 42, pp. 4131-4142, 1999.
Kleijn, C. R., “Computational Modeling of Transport Phenomena and Detailed Chemistry in Chemical Vapor Deposition – a Benchmark Solution,” Thin Solid Films, vol. 365, pp. 294-306, 2000.
Leakeas, C. L., and Sharif, M. A. R., “Effects of Thermal Diffusion and Substrate Temperature on Silicon Deposition in an Impinging-Jet CVD Reactor,” Numerical Heat Transfer, Part A, vol. 44, pp. 127-147, 2003.
Mountziaris, T. J., Kalyanasundaram, S., and Ingle, N. K., “A Reaction-Transport Model of GaAs Growth by Metalorganic Chemical Vapor Deposition Using Trimethyl-Gallium and Tertiary-Butyl-Arsine,” Journal of Crystal Growth, vol. 131, pp. 283-299, 1993.
Makarov, Yu. N., and Zhmakin, A. I., “On the Flow Regimes in VPE Reactors,” Journal of Crystal Growth, vol. 94, pp. 537-550, 1989.
Park, K.-W., and Pak, H.-Y., “Characteristics of Three-Dimensional Flow, Heat, and Mass Transfer in a Chemical Vapor Deposition Reactor,” Numerical Heat Transfer, Part A, vol. 37, pp. 407-423, 2000
Patankar, S. V., and Spalding, D. B., “A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows,” International Journal of Heat and Mass Transfer, vol. 15, pp. 1787-1806, 1972.
Peskin, A. P., and Hardin, G. R., “Gallium Arsenide Growth in a Pancake MOCVD Reactor,” Journal of Crystal Growth, vol. 186, pp. 494-510, 1998.
Varghese, S. S., and Frankel, S. H., “Numerical Modeling of Pulsatile Turbulent Flow in Stenotic Vessels,” Journal of Biomechanical Engineering, vol. 125, pp. 445-460, 2003.
Yoo, H., and Jaluria, Y., “Thermal Aspects in the Continuous Chemical Vapor Deposition of Silicon,” Journal of Heat Transfer, vol. 124, pp. 938-946, 2002.
Ferziger, J. H., and Peric, M., Computational Methods for Fluid Flow, Springer Verlag, New York, 2002.
Patankar, S. V., Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, New York, 1980.
Tannehill, J. C., Anderson, D. A., and Pletcher, R. H., Computational Fluid Mechanics and Heat Transfer, Taylor & Francis, Levittown, 1997.
Versteeg, H. K., and Malalasekera, W., An Introduction to Computational Fluid Dynamics-The finite volume method, Longman, London, 1995.
Wilcox, D. C., Turbulence Modeling for CFD, DCW Industries, Inc., La Canada , CA, 1993.
李鴻傑,「有機金屬化學氣相沉積出口效應之數值模擬」,中山大學碩士論文,民91。
莊達人,「VLSI製造技術」,高立圖書有限公司,台北,民87。
魏嘉宏,「具加熱段水平渠道內流場與共軛熱傳之數值模擬」,成功大學碩士論文,民92。