| 研究生: |
蔣欣芸 Chiang, Hsin-Yun |
|---|---|
| 論文名稱: |
積層合金功率電感中Fe-Si-Cr合金粉末與內電極Ag共燒反應之研究 Chemical reaction between Fe-Si-Cr alloy powder and inner electrode Ag during co-firing for multilayer alloy power inductors |
| 指導教授: |
向性一
Hsiang, Hsing-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 91 |
| 中文關鍵詞: | AgCrO2 、Ag2CrO4 、氣相反應 、Fe-Si-Cr |
| 外文關鍵詞: | silver chromate, silver chromite, gas phase reaction, Fe-Si-Cr |
| 相關次數: | 點閱:99 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用多功能X光薄膜繞射儀、穿透式電子顯微鏡(TEM)與掃描式電子顯微鏡(SEM)等儀器,研究積層合金功率電感中Fe-Si-Cr合金粉末與內電極Ag於共燒過程中之反應。實驗結果顯示,在含有O2之大氣環境下熱處理,O2不僅會促使Ag揮發並擴散,導致印刷之線路不連續甚至斷線,更會與Ag以及同樣易揮發之Fe-Si-Cr熱氧化層-Cr2O3,以氣相反應生成大量片狀AgCrO2 (silver chromite),由於此物質為一種p-type半導體,生成此結晶相會消耗Ag與Cr2O3,最後將導致絕緣電阻不足與崩潰電壓下降等問題。
此外,本研究亦設計實驗以探討片狀AgCrO2之生成機制,研究發現,在熱處理過程中,當溫度低於650 ℃時,Ag與Cr2O3會先反應生成Ag2CrO4 (silver chromate) ,因Ag2CrO4之熔點(658 ℃)低於熱處理溫度(750 ℃),故在超過658 ℃後,Ag2CrO4容易揮發並沿著粉末間的孔隙移動,與同樣易揮發之Cr2O3藉由氣相反應在粉末間孔隙,甚至擴散至樣品表面,生成大量的六角片狀物AgCrO2,而AgCrO2會在超過800 ℃之後分解為Ag與Cr2O3。
In this study, multipurpose X-Ray thin-film diffractometer, transmission electron microscope (TEM), and scanning electron microscope (SEM) were used to investigate the chemical reaction between Fe-Si-Cr alloy powder and internal electrode, silver, during co-firing for multilayer alloy power inductors. The experimental results show that oxygen not only promotes the volatilization and diffusion of Ag but also causes the printed circuit to become discontinuous or even disconnected, and it will also react with Ag and the volatile Cr2O3 to form a large amount of flaky AgCrO2 (silver chromite). Since AgCrO2 is a p-type semiconductor, the formation of this crystalline phase will consume Ag and Cr2O3, which will eventually lead to the problems of insufficient insulation resistance and the decrease of breakdown voltage.
On the other hand, this study also designed experiments to investigate the formation mechanism of flaky AgCrO2. The experimental results show that silver reacts with the Fe-Si-Cr thermal grown oxide layer, Cr2O3, to form Ag2CrO4 at temperatures under 650 ˚C. The formed Ag2CrO4 with low melting temperature then volatilizes at higher temperatures through the pore channels to react with the volatilized Cr2O3 to form the AgCrO2 via gas phase reaction. Then AgCrO2 will decompose to Ag and Cr2O3 at the temperature higher than 800°C.
[1] S. Y. Tong and M. J. Tung, "Introductions to Metal Power Inductor Technology for Power Modules," Industrial Materials, 2016.
[2] T. Samata and H. Ogawa, "INDUCTOR," ed: US Patent 20140009252 A1.
[3] 鄭明得、余志成, 「薄型大電流電感器鐵芯粉末調配之穩健最佳化設計」,中國機械工程學會第二十六屆全國學術研討會論文集,2009年。
[4] H.-I. Hsiang, L.-F. Fan, and K.-T. Ho, "Minor yttrium nitrate addition effect on FeSiCr alloy powder core electromagnetic properties," Journal of Magnetism and Magnetic Materials, vol. 444, pp. 1-6, 2017.
[5] 何冠廷,「鐵矽鉻壓粉磁芯之微觀結構與磁性質關係之研究」,成功大學資源工程學系學位論文,2016年。
[6] K. Shiroki, K. Kawano, H. Matsuura, and H. Kishi, "New Type Metal Composite Material for SMD Power Inductor," Journal of the Japan Society of Powder and Powder Metallurgy, vol. 61, no. S1, pp. S242-S244, 2014.
[7] J.-Y. Hsu, H.-C. Lin, H.-D. Shen, and C.-J. Chen, "High frequency multilayer chip inductors," IEEE Transactions on Magnetics, vol. 33, no. 5, pp. 3325-3327, 1997.
[8] TDK, "Multilayer Chip Inductor MLG0402Q/MLG0603P," Tech Journal, 2011.
[9] 柯文淞,「積層晶片電感」,CTIMES,2001年。
[10] 呂秉軍,「離子擴散對鎳銅鋅鐵氧磁體與硼鋁矽玻璃陶瓷共燒的影響」,成功大學資源工程學系學位論文,2012年。
[11] G. Ballou, "Resistors, capacitors, and inductors," in Handbook for Sound Engineers (Fourth Edition): Elsevier, 2008, pp. 241-272.
[12] C. R. Hendricks, V. Amarakoon, and D. Sullivan, "Processing of manganese zinc ferrites for high-frequency switch-mode power supplies," American Ceramic Society Bulletin, vol. 70, no. 5, 1991.
[13] P. Kollár, D. Olekšáková, V. Vojtek, J. Füzer, M. Fáberová, and R. Bureš, "Steinmetz law for ac magnetized iron-phenolformaldehyde resin soft magnetic composites," Journal of Magnetism and Magnetic Materials, vol. 424, pp. 245-250, 2017.
[14] P. Kollár, Z. Birčáková, J. Füzer, R. Bureš, and M. Fáberová, "Power loss separation in Fe-based composite materials," Journal of Magnetism and Magnetic Materials, vol. 327, pp. 146-150, 2013.
[15] A. Taghvaei, H. Shokrollahi, K. Janghorban, and H. Abiri, "Eddy current and total power loss separation in the iron–phosphate–polyepoxy soft magnetic composites," Materials & Design, vol. 30, no. 10, pp. 3989-3995, 2009.
[16] Y. Liu, Y. Yi, W. Shao, and Y. Shao, "Microstructure and magnetic properties of soft magnetic powder cores of amorphous and nanocrystalline alloys," Journal of Magnetism and Magnetic Materials, vol. 330, pp. 119-133, 2013.
[17] T. Saito, S. Takemoto, and T. Iriyama, "Resistivity and core size dependencies of eddy current loss for Fe-Si compressed cores," IEEE Transactions on Magnetics, vol. 41, no. 10, pp. 3301-3303, 2005.
[18] H. Shokrollahi and K. Janghorban, "Soft magnetic composite materials (SMCs)," Journal of Materials Processing Technology, vol. 189, no. 1-3, pp. 1-12, 2007.
[19] T. Maeda et al., "Development of super low iron-loss P/M soft magnetic material," SEI TECHNICAL REVIEW-ENGLISH EDITION-, vol. 60, p. 3, 2005.
[20] 汪建民,「粉末冶金技術手冊」,中華民國粉末冶金協會,1999年。
[21] 謝旭霞、呂建偉、金兆偉、杜宇,「金屬軟磁粉芯的研究進展 (熱噴塗技術)」,pp. 71-76,2014年。
[22] N. Mattern, M. Müller, C. Stiller, and A. Danzig, "Short-range structure of amorphous and nanocrystalline Fe-Si-B-Cu-Nb alloys," Materials Science and Engineering: A, vol. 179, pp. 473-478, 1994.
[23] Z. Zhang, X. Liu, S. Feng, and K. M. U. Rehman, "Fabrication of an Fe80.5Si7.5B6Nb5Cu Amorphous-Nanocrystalline Powder Core with Outstanding Soft Magnetic Properties," Journal of Electronic Materials, vol. 47, no. 3, pp. 1819-1823, 2018.
[24] C. Smith et al., "Comparison of the crystallization behavior of Fe-Si-B-Cu and Fe-Si-B-Cu-Nb-based amorphous soft magnetic alloys," Metallurgical and Materials Transactions A, vol. 45, no. 7, pp. 2998-3009, 2014.
[25] 張軒耀,「Fe-Si-Cr合金粉之添加水玻璃絕緣處理研究」,臺北科技大學材料及資源工程系研究所學位論文,2014年。
[26] 陳柏宇,「退火後鐵基非晶質薄帶之結構性質分析」,臺灣大學材料科學與工程學研究所學位論文,2016年。
[27] W.-H. Wang, C. Dong, and C. Shek, "Bulk metallic glasses," Materials Science and Engineering: R: Reports, vol. 44, no. 2-3, pp. 45-89, 2004.
[28] B. Zuo, N. Saraswati, T. Sritharan, and H. Hng, "Production and annealing of nanocrystalline Fe–Si and Fe–Si–Al alloy powders," Materials Science and Engineering: A, vol. 371, no. 1-2, pp. 210-216, 2004.
[29] M. Khajepour and S. Sharafi, "Characterization of nanostructured Fe–Co–Si powder alloy," Powder technology, vol. 232, pp. 124-133, 2012.
[30] P. Shyni and A. Perumal, "Structural and magnetic properties of nanocrystalline Fe–Co–Si alloy powders produced by mechanical alloying," Journal of Alloys and Compounds, vol. 648, pp. 658-666, 2015.
[31] S. Swaminathan and M. Spiegel, "Effect of alloy composition on the selective oxidation of ternary Fe-Si-Cr, Fe-Mn-Cr model alloys," Surface and Interface Analysis, vol. 40, no. 3-4, pp. 268-272, 2008.
[32] S. F. Chen, H. Y. Chang, S. J. Wang, S. H. Chen, and C. C. Chen, "Enhanced electromagnetic properties of Fe–Cr–Si alloy powders by sodium silicate treatment," Journal of Alloys and Compounds, vol. 637, pp. 30-35, 2015.
[33] X. Wang, J. Li, N. Zhang, J. Xie, D. Liang, and L. Deng, "Evolution of hyperfine structure and magnetic characteristic in Fe-Si-Cr alloy with increasing heat treatment temperature," Materials & Design, vol. 96, pp. 314-322, 2016.
[34] Q. Guo, S. Liu, X. Wu, L. Liu, and Y. Niu, "Scaling behavior of two Fe-xCr-5Si alloys under high and low oxygen pressures at 700°C," Corrosion Science, vol. 100, pp. 579-588, 2015.
[35] P. Piccardo et al., "Metallic interconnects for SOFC: Characterization of their corrosion resistance in hydrogen/water atmosphere and at the operating temperatures of differently coated metallic alloys," Surface and Coatings Technology, vol. 201, no. 7, pp. 4471-4475, 2006.
[36] H. Ogawa, A. Tanada, H. Matsuura, K. Tanaka, H. Kishi, and K. Kawano, "Coil-type electronic component and process for producing same," ed: US Patent 8749339 B2, 2014.
[37] 劉坤儒,「行星式球磨對 Fe-Si-Cr 合金粉末之顯微結構與電磁特性影響之研究」,成功大學資源工程學系學位論文,2017年。
[38] J. H. Jean, C. R. Chang, and C. D. Lei, "Sintering of a Crystallizable CaO‐B2O3‐SiO2 Glass with Silver," Journal of the American Ceramic Society, vol. 87, no. 7, pp. 1244-1249, 2004.
[39] K. B. Shim, N. T. Cho, and S. W. Lee, "Silver diffusion and microstructure in LTCC multilayer couplers for high frequency applications," J. Mater. Sci., vol. 35, no. 4, pp. 813-820, 2000.
[40] D. Tramosljika, J. Schaefer, G. Rixecker, and F. Aldinger, "Sintering behavior of a LTCC material and influence of silver on the sintering behavior," presented at the Proceedings of conference on ceramic interconnect and ceramic microsystems technologies (CICMT), Baltimore, 2005.
[41] A. Roesler, J. Schare, and C. Hettler, "Integrated power electronics using a ferrite-based low-temperature co-fired ceramic materials system," in Electronic Components and Technology Conference (ECTC), 2010 Proceedings 60th, 2010, pp. 720-726: IEEE.
[42] C.-S. Hsi, Y.-R. Chen, and H.-I. Hsiang, "Diffusivity of silver ions in the low temperature co-fired ceramic (LTCC) substrates," Journal of materials science, vol. 46, no. 13, pp. 4695-4700, 2011.
[43] M. Eberstein, M. Wenzel, C. Feller, T. Seuthe, and F. Gora, "Silver processing in thick film technology for power electronics," presented at the Proceedings 8th international CICMT conference and exhibition, Erfurt, 2012.
[44] C. Y. Chen and W. H. Tuan, "Evaporation of silver during cofiring with barium titanate," Journal of the American Ceramic Society, vol. 83, no. 7, pp. 1693-1698, 2000.
[45] H. Naghib zadeh, G. Oder, J. Hesse, T. Reimann, J. Töpfer, and T. Rabe, "Effect of oxygen partial pressure on co-firing behavior and magnetic properties of LTCC modules with integrated NiCuZn ferrite layers," Journal of Electroceramics, vol. 37, no. 1-4, pp. 100-109, 2016.
[46] Z. Lu and J. Zhu, "Thermal evaporation of pure Ag in SOFC-relevant environments," Electrochemical and Solid-State Letters, vol. 10, no. 10, pp. B179-B182, 2007.
[47] W. Meulenberg, O. Teller, U. Flesch, H. Buchkremer, and D. Stöver, "Improved contacting by the use of silver in solid oxide fuel cells up to an operating temperature of 800˚C," J. Mater. Sci., vol. 36, no. 13, pp. 3189-3195, 2001.
[48] N. Akhtar, S. P. Decent, and K. Kendall, "Structural stability of silver under single-chamber solid oxide fuel cell conditions," International journal of hydrogen energy, vol. 34, no. 18, pp. 7807-7810, 2009.
[49] S. W. Sofie, P. Gannon, and V. Gorokhovsky, "Silver–chromium oxide interactions in SOFC environments," Journal of Power Sources, vol. 191, no. 2, pp. 465-472, 2009.
[50] J. H. Jean and C. R. Chang, "Interfacial Reaction Kinetics between Silver and Ceramic‐Filled Glass Substrate," Journal of the American Ceramic Society, vol. 87, no. 7, pp. 1287-1293, 2004.
[51] 李英杰、蔡佩蓉、詹振豪、李文熙,“探討燒結參數對於抑制銀擴散的 (Zn, Mg) TiO3-based 積層陶瓷電容器之影響”,鑛冶:中國鑛冶工程學會會刊, no. 211,pp. 79-86,2010。
[52] E. Hondros and A. Moore, "Evaporation and thermal etching," Acta Metallurgica, vol. 8, no. 9, pp. 647-653, 1960.
[53] E. Gebhardt, Gase und kohlenstoff in metallen. Berlin: Springer-Verlag, 1976.
[54] B. Chalmers, R. King, and R. Shuttleworth, "The thermal etching of silver," Proceedings of the Royal Society of London A, vol. 193, no. 1035, pp. 465-483, 1948.
[55] X. Bao, G. Lehmpfuhl, G. Weinberg, R. Schlögl, and G. Ertl, "Variation of the morphology of silver surfaces by thermal and catalytic etching," Journal of the Chemical Society, Faraday Transactions, vol. 88, no. 6, pp. 865-872, 1992.
[56] T.-C. Wei and J. Phillips, "Thermal and catalytic etching: mechanisms of metal catalyst reconstruction," in Advances in catalysis, vol. 41: Elsevier, 1996, pp. 359-421.
[57] J. Leroux and E. Raub, "Untersuchungen über das Verhalten von Silber und Silber‐Kupferlegierungen beim Glühen in Sauerstoff und Luft," Zeitschrift für anorganische und allgemeine Chemie, vol. 188, no. 1, pp. 205-231, 1930.
[58] R. Grimley, R. Burns, and M. G. Inghram, "Thermodynamics of the vaporization of Cr2O3: dissociation energies of CrO, CrO2, and CrO3," The Journal of Chemical Physics, vol. 34, no. 2, pp. 664-667, 1961.
[59] C. Gindorf, L. Singheiser, and K. Hilpert, "Vaporisation of chromia in humid air," Journal of Physics and Chemistry of Solids, vol. 66, no. 2-4, pp. 384-387, 2005.
[60] G. C. Fryburg, F. J. Kohl, and C. A. Stearns, "Enhanced Oxidative Vaporization of Cr2O3 and Chromium by Oxygen Atoms," Journal of the Electrochemical Society, vol. 121, no. 7, pp. 952-959, 1974.
[61] K. Hilpert, D. Das, M. Miller, D. Peck, and R. Weiss, "Chromium vapor species over solid oxide fuel cell interconnect materials and their potential for degradation processes," Journal of the Electrochemical Society, vol. 143, no. 11, pp. 3642-3647, 1996.
[62] E. J. Opila et al., "Theoretical and experimental investigation of the thermochemistry of CrO2(OH)2(g)," The Journal of Physical Chemistry A, vol. 111, no. 10, pp. 1971-1980, 2007.
[63] M. Stanislowski, E. Wessel, K. Hilpert, T. Markus, and L. Singheiser, "Chromium vaporization from high-temperature alloys I. Chromia-forming steels and the influence of outer oxide layers," Journal of the Electrochemical Society, vol. 154, no. 4, pp. A295-A306, 2007.
[64] H. Asteman, J.-E. Svensson, and L.-G. Johansson, "Evidence for chromium evaporation influencing the oxidation of 304L: the effect of temperature and flow rate," Oxidation of metals, vol. 57, no. 3-4, pp. 193-216, 2002.
[65] H. Asteman, J.-E. Svensson, and L.-G. Johansson, "Oxidation of 310 steel in H2O/O2 mixtures at 600 ˚C: the effect of water-vapour-enhanced chromium evaporation," Corrosion Science, vol. 44, no. 11, pp. 2635-2649, 2002.
[66] H. Asteman, J.-E. Svensson, and L.-G. Johansson, "Effect of Water-Vapor-Induced Cr Vaporization on the Oxidation of Austenitic Stainless Steels at 700 and 900°C Influence of Cr/Fe Ratio in Alloy and Ce Additions," Journal of the Electrochemical Society, vol. 151, no. 3, pp. B141-B150, 2004.
[67] J. Zhu and H. Ghezel-Ayagh, "Cathode-side electrical contact and contact materials for solid oxide fuel cell stacking: A review," International Journal of Hydrogen Energy, vol. 42, no. 38, pp. 24278-24300, 2017.
[68] M. Ciešlak-Golonka, "Thermal decomposition and spectroscopic properties of silver chromate," Journal of Thermal Analysis and Calorimetry, vol. 38, no. 11, pp. 2501-2513, 1992.
[69] C. W. Pistorius, "Phase diagrams of silver sulfate, silver selenate, and silver chromate to 40 kbar," The Journal of Chemical Physics, vol. 46, no. 6, pp. 2167-2171, 1967.
[70] H. W. Abernathy, E. Koep, C. Compson, Z. Cheng, and M. Liu, "Monitoring Ag−Cr Interactions in SOFC Cathodes Using Raman Spectroscopy," The Journal of Physical Chemistry C, vol. 112, no. 34, pp. 13299-13303, 2008.
[71] B. M. Abu-Zied, "Structural and catalytic activity studies of silver/chromia catalysts," Applied Catalysis A: General, vol. 198, no. 1, pp. 139-153, 2000.
[72] M. A. Marquardt, N. A. Ashmore, and D. P. Cann, "Crystal chemistry and electrical properties of the delafossite structure," Thin Solid Films, vol. 496, no. 1, pp. 146-156, 2006.
[73] D. Xiong et al., "Preparation of p-type AgCrO2 nanocrystals through low-temperature hydrothermal method and the potential application in p-type dye-sensitized solar cell," Journal of Alloys and Compounds, vol. 642, pp. 104-110, 2015.
[74] L. H. Tjeng, M. B. J. Meinders, J. van Elp, J. Ghijsen, G. A. Sawatzky, and R. L. Johnson, "Electronic structure of Ag2O," Physical review. B, vol. 41, no. 5, pp. 3190-3199, 1990.
[75] L. Wilkinson and J. Zhu, "Ag-perovskite composite materials for SOFC cathode–interconnect contact," Journal of the Electrochemical Society, vol. 156, no. 8, pp. B905-B912, 2009.