| 研究生: |
陳元璋 Chen, Yuan-Jhang |
|---|---|
| 論文名稱: |
利用水熱法/電鍍法/化學氣相沉積法製備氧化鋅奈米線應用於可撓式場發射陰極之應用 Characteristics of ZnO nanowires by Hydrothermal/ Electroplating/ Chemical Vapor Deposited Method for Flexible Field Emission Application |
| 指導教授: |
林俊宏
Lin, Chun-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 場發射 、奈米線 、氧化鋅 、水熱法 、電鍍法 |
| 外文關鍵詞: | Field emission, nanowires, ZnO, hydrothermal method, electroplating method |
| 相關次數: | 點閱:106 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
在顯示器的發展中,人們除了追求平面化外,更期望它的性能不斷提升,如:重量減化、高的亮度、低成本和低消耗功率等。在這種需求下奈米線場發射陰極顯示照明有符合以上所要求之發展特性。
本研究以水熱法、電鍍法為主要製程成長氧化鋅奈米線,應用於場發射陰極。而我們也製作了相對穩定的製程──化學氣相沉積(CVD)來當作對比組。在電鍍法跟水熱法的前製程中,利用二水醋酸鋅配製成乙醇溶液,並使用旋轉塗佈的方式製作種子層;並用六水合硝酸鋅作為反應溶液去沉積氧化鋅奈米線。此法相較於化學氣相沉積法簡單許多,也可節省很多成本與時間。本文我們將會探討:水熱法在不同成長時間和反應溶液濃度下、電鍍法在不同濃度下、氧化鋅的性質與場發射效應強弱。
針對實驗的結果將利用高解析場發射掃描式電子顯微鏡(UHRFE-SEM)對基材、觸媒及氧化鋅的表面形貌作觀察。也用螢光光譜儀(PL)來判定氧化鋅的品質;450 nm~500 nm波段代表著奈米線材料本身存在有氧空缺,而此缺陷與場發效果呈現負相關也被我們證實。最後我們用本實驗室所架設的場發射量測系統作場發射特性之量測及發光。
結果顯示,雖然水熱法的成長時間相對於電鍍法較長,但無論是場發射效果還是密度與形貌表現都優於電鍍法。而本研究中,場發射因子最好的結果為534,起始電場為8.0 V /μm。雖然此結果沒有優於CVD所成長的;但此製程是較為簡單,且在低溫、大氣環境下就可進行的。也結合了本實驗室的電鍍技術,相信未來一定能有更好的結果產生。
In the development of displays, a large scale systems will begin to downsize and improve its performance, such as weight reduction, high brightness, low cost and low power consumption. The nanowire field emission display/lighting have consistent with the development of the above requirements. ZnO nanowires can be also based on to construct gas sensors, chemical sensors, biosensors, UV sensors, pH sensors and other sensors with different sensing mechanisms.
In this study, hydrothermal method and electroplating method as the main process to grow zinc oxide nanowires used in field emission cathode. The zinc acetate dihydrate was formulated as ethanol solution before the process, and then we coated the seed layer by spin coater, we used zinc nitrate hexahydrate solution to deposit zinc oxide nanowires. Besides, in order to understand the performance of nanowire with hydrothermal method and electroplating method, we also produce a relatively stable process such as chemical vapor deposition (CVD) as contrast. The results that indicated that hydrothermal/electroplating methods are not only simpler than CVD, but also save a lot of cost and time.
In this paper, we also discussed the following parameters: hydrothermal method at different time, growing concentration of the reaction solution, electroplating method at different concentrations and characteristic of zinc oxide and field emission effect. Moreover, in our experiment, high-resolution field emission scanning electron microscope (UHRFE-SEM) was used to measure the morphology of zinc oxide and fluorescence spectroscopy (PL) was used to determine the quality of zinc oxide. Finally, we use field emission measurement system to measure the characteristics of field emission and its optical properties.
In our studies, the result presented that although the growth time of ZnO nanowires by hydrothermal method is longer than the electroplating method, the field emission, density and morphology properties of ZnO film are better than by electroplating method. In our experiment, the best results of field emission enhancement factor is 5340, the turn on field is 8.0 V/μm. Even though this result is not better than the CVD growth; but this process can be performed at a low temperature and atmospheric environment. Therefore, this technique can easily use for low cost field emission and sensor applications. So we invested the ZnO nanowires lighting element to carbon reduction and improving field emission effect.
REFERENCES
[1] Lighting the way:Perspectives on the global lighting market, Mckinsey & Company, pp.15. (2012).
[2] 材料世界網,http://www.materialsnet.com.tw/2013LightingJapan_Exhibit_Tech.aspx.
[3] STPI科技產業資訊室,http://iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=7887.
[4] 新電子,http://www.mem.com.tw/seminar_history.asp?sn=1309040001.
[5] 林志勳,LED照明市場現況與趨勢,工研院產經中心。
[6] 林志勳,全球照明市場發展,工研院產經中心。
[7] STPI科技產業資訊室,http://iknow.stpi.narl.org.tw/post/Read.aspx?PostID=8146.
[8] 唐慧琪、江柏風,全球軟板式場發展趨勢,IEK產業情報網。
[9] J. Hu, W. Odom , Acc. Chem. Res. 32435 (1999).
[10] Z. W. Pan, Z. R. Dai and Z. L. Wang, Science 291, 1947 (2001).
[11] P. X. Gao, Y. Ding and Z. L. Wang, Nano Lett. 9, 1315 (2003).
[12] Z. L. Wang, X. Y. Kong and J. M. Zou Phys. Rev. Lett. 91185502 (2003)
[13] J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee and S. T. Lee, Chem. Mater. 15305 (2003).
[14] R. S. Yang, Y. Ding and Z. L. Wang, Nano Lett. 4, 1309 (2004).
[15] C. H. Liu, J. A. Zapien, Y. Yao, X. M. Meng, C. S. Lee, S. S. Fan, Y. Lifshitz and S. T. Lee, Adv. Mater. 15, 838 (2003).
[16] J. S. Jie, G. Z. Wang, Q. T. Wang, Y. M. Chen, X. H. Han and X. P. Wang, Appl. Phys. Lett. 86 198 (2005).
[17] Y. Li, G. W. Meng, L. D. Zhang and F. Phillip, Appl. Phys.Lett. 76 2011 (2002).
[18] G. S. Wu, L. D. Zhang, B. C. Cheng, T. Xie and X. Y. Yuan, Am. Chem. Soc. 126 5976 (2004).
[19] X. D. Wang, C. J. Summers and Z. L. Wang, Nano Lett. 4423 (2004).
[20] C. Y. Geng, Y. Jiang, Y. Yao, X. M. Meng, J. A. Zapien, C. S. Lee, Y. Lifshitz and S. T. Lee, Adv. Funct. Mater. 14 589 (2004).
[21] J. S. Jie, G. Z. Wang, Y. M. Chen, X. H. Han, Q. T. Wang, B. Xu and J. G. Hou, Appl. Phys. Lett. 86, 031909 (2005).
[22] M. Lorenz, E. M. Kaidashev, A. Rahm, Appl. Phys. Lett. 86, 143113 (2005).
[23] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. F. Zhang, R. J. Saykally and P. D. Yang, Angew.Chem. Int. Edn Engl. 42, 3031 (2003).
[24] 趙祖佑、覃禹華,未來軟性電子應用商機研究
[25] C. M. Lieber, Solid State Commun. 107, 607 (1998).
[26] 財經知識庫,http://www.moneydj.com/KMDJ/wiki/WikiViewer.aspx?Title=%E8%BB%9F%E6%9D%BF
[27] L. Vayssieres, Adv. Mater. 15, 464 (2003).
[28] R. H. Fowler, L. Nordheim, JSTOR 119, 173(1928).
[29] J. M. Bonard, K. A. Dean, B. F. coll, and C. Klinke, Phy. Review Lett., 89, 197602 (2002).
[30] P. A. Lewis, B. W. Alphenaar, H. Ahmed, Appl. Phy. Lett. , 79, 3148 (2001).
[31] T. C. Cheng, J. Shieh, W. J. Huang, M. C. Yang, M.H. Cheng, Appl. Phy. Lett. , 88, 263118 (2006).
[32] Y. Uxiang Qin and M. Hu, Appl. Surface Science, 255, 7618 (2009).
[33] http://www.ccunix.ccu.edu.tw/~deptgioom/docs/LFPDT95/chapter%207.pdf
[34] Y. Saito and S. Uemura, Carbon 38, 169 (2000); J. M. Kim,W. B. Choi, N. S. Lee, and J. E. Jung, Diamond Relat. Mater. 9, 1184 (2000).
[35] J. Bonard, H. Kind, T. Stockli, and L. Nilsson, Solid-State Electron. (in press); W. A. de Heer, A. Chaˆtelain, and D. Ugarte, Science 270, 1179 (1995).
[36] D. Chung, S. H. Park, H. W. Lee, J. H. Choi, S. N. Cha, J. W. Kim, J. E. Jang, K. W. Min, S. H. Cho, M. J. Yoon, J. S. Lee, C. K. Lee, J. H. Yoo, J. Kim, J. E. Jung, Y. W. Jin, Y. J. Park, and J. B. You, Appl. Phys. Lett. 80, 4045 (2002).
[37] D. Kim, H. Yang, H. Kang, and H. Lee, Chem. Phys. Lett. 368, 439 (2003).
[38] W. B. Choi, Y. W. Jin, H. Y. Kim, S. J. Lee, M. J. Yun, J. H. Kang, Y. S. Choi, N. S. Park, N. S. Lee, and J. M.Kim, Appl. Phy. Lett. 78, 1547 (2001)
[39] J. M. Kim, H. W. Lee, Y. S. Choi, N. S. Lee, J. E. Jung, J. W. Kim, W. B. Choi, Y. J. Park, J. H. Choi, Y. W. Jin, W. K. Yi, N. S. Park, G. S. Park, and J. K. Chee, J. Vac. Sci. Technol. B 18, 888 (2000).
[40] Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P. N. Provencio, Science 282, 1105 (1998).
[41] W. B. Choi, N. S. Lee, W. K. Yi, Y. W. Jin, Y. S. Choi, I. T. Han, D. S. Chung, H. Y. Kim, J. H. Kang, Y. J. Lee, M. J. Yun, S. H. Park, S. Yu, J.E. Jang, J. H. You, and J. M. Kim, Society for Information Display 2000, Digest of Technical Papers, 2000, pp. 324–327.
[42] H. Ago, T. Komatsu, S. Ohshima, Y. Kuriki, and M. Yumura, Appl. Phys. Lett. 77, 79 (2000).
[43] K. Zheng, H. Shen , J. Li , D. Sun , G. Chen , Vacuum, 83, 261–264 (2009).
[44] Kai Hou , Chi Li , Wei Lei . Iijima, Nature London 354, 56 (1991).
[45] M. Morales and C. M. Lieber, Science 279, 208 (1998).
[46] Y. B. Li, Y. Bando, T. Sato, and K. Kurashima, Appl. Phys. Lett. 81, 144 (2002).
[47] J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, Science 287, 622 (2000).
[48] A. Kolmakov, Y. Zhang, G. Cheng, and M. Moskovits, Adv. Mater. (Weinheim, Ger.) 15, 997 (2003).
[49] C. Li, D. Zhang, X. Liu, S. Han, T. Tang, J. Han, and C. Zhou, Appl. Phys. Lett. 82, 1613 (2003).
[50] L. Vayssieres, K. Keis, A. Hagfeldt and S. E. Lindquist, Chem. Mater. 13, 4395 (2001).
[51] P. X. Gao, Y. Ding, W. J. Mai, W. L. Hughes, C. S. Lao, Z. L. Wang, Science, 309, 1700 (2005).
[52] X. D. Wang, J. H. Song, P. Li, J. H. Ryou and R. D. Dupuis, C. J.; Wang, Z. L. J. Am. Chem. Soc., 127, 7920 (2005).
[53] M. S. Arnold, P. Avouris, Z. W. Pan, Z. L. Wang, Phys. Chem B, 107, 659 (2003).
[54] X. D. Wang, C. Neff, E. Graugnard, Y. Ding, J. S. King, L. A. Pranger, R. Tannenbaum and Z. L. Wang, C. J. AdV. Mater. 17,(2103).
[55] Bai, X. D.; Wang, E. G.; Gao, P. X.; Wang, Z. L. Nano Lett. , 3,1147 (2003).
[56] Kong, X. Y.; Wang, Z. L. Nano Lett. 2003, 3, 1625. (b) Wang, Z. L.; Song, J. H. Science 2006, 312, 242. (c) Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L. Science, 316, 102 (2007).
[57] D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell, W.C. Harsch, Solid State Commun. 105 399 (1998).
[58] Y. Chen, D.M. Bagnall, H.-J. Koh, K.-T. Park, K. Hiraga, Z.-Q. Zhu, T. Yao, J. Appl. Phys. 84 3912 (1998).
[59] P. Fons, K. Iwata, S. Niki, A. Yamada, K. Matsubara, J. Crystal Growth 201 627 (1999).
[60] R.D. Vispute, V. Talyansky, Z. Trajanovic, S. Choopun, M.Downes, R.P. Sharma, T. Venkatesan, M.C. Woods, R.T. Lareau, K.A. Jones, A.A. Iliadis, Appl. Phys. Lett. 70 2735 (1997).
[61] J. Narayan, K. Dovidenko, A.K. Sharma, S. Oktyabrsky, J.Appl. Phys. 84 2597(1998).
[62] Y. Segawa, A. Ohtomo, M. Kawasaki, H. Koinuma, Z.K. Tang,P. Yu, G.K.L. Wong, Phys. Stat. Sol. 202 669 (1997).
[63] Y. Liu, C.R. Gorla, S. Liang, N. Emanetoglu, Y. Lu, H. Shen,M. Wraback, J. Electron. Mater. 29 69 (2000).
[64] B. Hahn, G. Heindel, E. Pschoor-Schoberer, W. Gebhardt,Semicond. Sci. Tech. 13 788(1998).
[65] M. Kasuga, S. Ogawa, Jpn. J. Appl. Phys. 22 794 (1983).
[66] N. Takahashi, K. Kaiya, T. Nakamura, Y. Momose, H. Yamamoto,Jpn. J. Appl. Phys. 38 L454 (1999).
[67] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H.Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, Y. Segawa , Appl. Phys. Lett. 72 2466 (1998).
[68] Wang Z L, Kong X Y, Ding Y, Gao P X, HughesW L, Yang R S and Zhang Y, Adv. Funct. Mater. 14 943 (2004).
[69] D. P. Yu, C. S. Lee, I. Bello, N. Wang, and X. S. Sun, Solid State Communications 105, 403 (1998)
[70] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science 292, 1897 (2001); K. Govender, D. S. Boyle, P. O’Brien, D. Binks, D. West, and D. Coleman, Adv. Mater. (Weinheim, Ger.) 14, 1221 (2002).
[71] P. Poncharal, Z. L. Wang, D. Ugarte, and W. A. de Heer, Science 283, 1513 (1999).
[72] V. T. Binh and S. T. Purcell, Appl. Surf. Sci. 111, 157 (1997).
[73] K. Ashihara, Y. Saito, S. Tsuchida, H. Nakane, and H. Adachi, Electron. Commun. Jpn. , Part 2: Electron. 81, 52 (1998).
[74] Y. W. Zhu, H. Z. Zhang, X. C. Sun, S. Q. Feng, J. Xu, Q. Zhao, B. Xiang, R. M. Wang, and D. P. Yu, Appl. Phy. Let. 83, 144 (2003).
[75] D. Gal, G. Hodes, D. Lincot, H.-W. Schock, Thin Solid Films, 361-362 (2000).
[76] Y. Li, G. W. Meng, L. D. Zhang, and F. Phillipp , Appl. Phy. Lett. 76, 2011 (2000).
[77] C. J. Lee, T. J. Lee, S. C. Lyu, and Y. Zhang , Appl. Phy. Lett. 3648-2650 (2002).
[78] B. Cao, Y. Li, G. Duan, and W. Cai, American Chemical Society, 1091-1095 (2005).
[79] B. Cao, Y. Li, G. Duan, and W. Cai, INSTITUTE OF PHYSICS PUBLISHING, 2567–2574 (2005)
[80] L. Li, S. Pan, X. Dou, Y. Zhu, X. Huang, Y. Yang, G. Li, and L. Zhang, J. Phys. Chem., 111, 7288-7291 (2007)
[81] Y. Fang, K. Mun Wong and Y. Lei, Nanoscale Research Letters, 7:197(2012)
[82] 涂國平,台北科技大學,碩士論文 (2006)。
[83] L. E. Shea, The Electrochemical Society, vol.7, pp.24-27 (1998).
[84] H. C. Swart, T. A. Trottier, J. S. Sebastian, S. L. Jones and P. H. Holloway, Appl. Phys. 83, 4578 (1998)
[85] H. Shionoya, W. M. Yen, H. Yamamoto, CRC Press , 1080 (1999).
[86] F. L. Zhang, S. Yang, C. Stoffers, J. Penczek, P. N. Yocom, D. Zaremba, B. K. Wagner and C. J. Summers, Appl. Phys. Lett. 72, 2226 (1998).
[87] J. C. Souriau, Y. D. Jiang, J. Penczek and H. G. Paris, Christopher J. Summers, Materials Science and Engineering, B76 165–168 (2000).
[88] K. Tanaka, S. Okamoto, H. Kominami, Y. Nakanishi, X. Du and A. Yoshikawa, Appl. Phys. 92, 834 (2002).
[89] Y. R. Do, Electrochemical Society, volume 147,issue 4, 1597-1600 (2000).
[90] S. Yang, C. Stoffers, F. Zhang, Applied Physics Letters, vol.72, 158-160 (1998).
[91] K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant and J. A. Voigt, Appl. Phys. Lett. 68, 403 (1996).
[92] T. Pauporte, D. Lincot, Electrochemical Society, volume 148,issue 4, C310-C314 (2001).
[93] M. H. Jung, M.J. Chu, J. Mater. Chem. C,2,6675-6682 (2014)
[94] A. B. Djurisic, W. C. Choy and V. A. Roy, Adv. Funct. Mater., 14, 856 (2004)
[95] H. J. Egelhaaf , D. Oelkrug and J. Cryst. Growth, 161, 190 (1996)
[96] A. Wander, F. Schedin, P. Steadman, A. Norris, R. McGrath and T. S. Turner, Harrison NM: Stability of polar oxide surfaces. Phys Rev Lett, 86:3811-3814 (2001).
[97] T. Pauporté, O. Lupan, J. Zhang, T. Tugsuz, I. Ciofini, F. Labat and B. Viana, ACS Appl. Mater. Interfaces, 7, 11871 (2015).
[98] J. Elias, R. Tena-Zaera and C. Le´vy-Cle´ment, Journal of Electroanalytical Chemistry 621, 171 (2008).
[99] H. R. Moutinho, M. M. Al-Jassim, D. H. Levi, P. Dippo, L. L. Kazmersk and J. Vac. Sci. Technol. A 16, 1251 (1998).
校內:2021-12-31公開