| 研究生: |
彭信源 Peng, Shin-Yuen |
|---|---|
| 論文名稱: |
焚化底渣濕篩污泥產製功能性建材之研究 Production of functional building materials using wet-sieving sludge from MSWI bottom ash. |
| 指導教授: |
張祖恩
Chang, Juu-En |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 焚化底渣濕篩污泥 、托伯莫萊土 、功能性建材 |
| 外文關鍵詞: | wet-sievig sludge from MSWI bottom ash, tobermorite, functional building material |
| 相關次數: | 點閱:156 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
焚化底渣濕篩污泥(wet-sieving sludge from MSWI bottom ash,BAS)含有鈣、矽等元素,應可合成托伯莫萊土(tobermorite,Ca5(OH)2Si6O16•4H2O)作為功能性建材替代原料之潛力。此外,經由毒性特性溶出程序(toicity characteristic leaching procedure,TCLP),顯示BAS應無重金屬溶出超過管制標準之疑慮,但因粒徑細小、無法作為骨材之用,故再利用途徑受限,且BAS含碳酸鈣,可能會影響tobermorite生成。本研究以氧化鈣(CaO)、二氧化矽(SiO2)、玻璃纖維(glass fiber)作為原料,經加壓成型與高壓蒸氣養護程序,並分析製品之物化特性,歸納最適操作條件,作為功能性建材基礎研究。此外,嘗試將BAS以調質方式應用於產製功能性建材,並透過耐火測試、批次與長期溶出試驗,評析其再利用之可行性。
研究結果顯示,玻璃纖維對抗彎強度影響較密度顯著,纖維控制在8 wt.%、水固比為1.45 L/kg、Ca/Si莫耳比為0.83,有最佳抗彎強度。碳酸鈣添加量在控制適當Ca/Si下,對tobermorite形成不受影響,而碳酸鈣添加在2 wt.%以下對製品孔隙有填塞效果,抗彎強度因此提升,但添加超過2 wt.%,對製品孔隙與抗彎強度均有負面之影響。加壓程序能排除多餘水分,提高製品抗彎強度與密度,當加壓時間控制在3 min,固定壓力100 kg/cm2時,製品結構與特性已然趨於穩定。高壓蒸氣12 atm,養護時間15小時,製品有最佳抗彎強度約10.10 N/mm2。抗彎強度受纖維、加壓與高壓養護程序之影響,並與平均孔隙直徑呈現負相關。
BAS之反應性鈣、矽分析結果可知,其反應性SiO2約占總SiO2的80.30 %,反應性CaO約占總BAS的2.47 %。將BAS以反應性鈣/矽調質產製功能性建材,製品之抗彎強度、tobermorite水化物形成情形均優於以總鈣/矽調質之製品。此外,以反應性鈣/矽調質方式,殘留較少CaO與SiO2,顯示其反應較為完全。耐火試驗得知,添加15 wt.% BAS之製品於550℃,持溫30 min下,抗彎強度未明顯降低,且優於一般鋼筋混凝土耐火之極限。後續加熱溫度至700℃,因碳酸鈣分解造成製品產生裂縫與抗彎強度下降。當加熱溫度達900℃,製品出現龜狀裂紋,此時,玻璃纖維熔化與tobermorite水化物轉變為矽鈣石(wollastonite,CaSiO3),均導致製品結構破壞,進而影響製品性能表現。
此外,由批次溶出試驗得知,在醋酸水溶液環境下,由BAS產製之製品均符合「有害事業廢棄物認定標準」與綠建材溶出標準。此外,在酸雨、去離子水環境下,重金屬溶出均低於偵測極限。桶槽溶出試驗一般元素以Ca、Si、Na元素有溶出情形,由荷蘭建築材料指令(building material decree,BMD)所管制重金屬元素溶出均低於偵測極限,因此,BAS產製功能性建材應為環境友善、功能性之建材。
This study investigates on development of functional building materials. Furthermore, it was intended to utilize wet-sieving sludge from municipal solid waste incineration bottom ash (BAS) in production of functional building materials. Several parameters must be determined including fiber content, calcium to silica ratio (Ca/Si), water to solid ratio (W/S), press time and autoclave curing condition. The products have the highest flexural strength about 10.10 N/mm2 when fiber content, W/S ratio and press time are 8 wt.%, 1.45 L/kg and 3 min. Besides, the products with Ca/Si ratio around 0.83 under 12-atm saturated steam pressure for 15 h would have better formation of tobermoirte (Ca5(OH)2Si6O16•4H2O). In addition, this study investigates unique chemical analysis to define reactive CaO and SiO2 of BAS. Besides, the results reveal that products have better flexural strength and formation of tobermorite comparing to others which using parameters of total SiO2 and CaO in BAS. The products with 15 wt.% BAS have no significant change at 550℃ for 30 min. They exceed the fire-resistance limitation of reinforced concrete. In terms of leaching test, leaching of heavy metals from products meet TCLP and green building material limit under the condition at acetic acid. Furthermore, from tank leaching test, leaching of heavy metals of building material decree (BMD) is not detected.
Aggarwal, L. K. (1992). Studies on cement-bonded coir fibre boards. Cement and Concrete Composite, 14, 63-69.
Akers, S. A. S., & Garrett, G. G. (1986). The influence of processing parameters on the strength and toughness of asbestos cement composites. The International Journal of Cement Composites and Lightweight, 8(2), 93-100.
Alaejos, P., & Lanza, V. (2012). Influence of equivalent reactive content on expansion due to alkali silica reaction. Cement and Concrete Research, 42, 99-104.
Alhozaimy, A., Jaafar, M.S., Al-Negheimish, A., Abdullah, A., Taifiq-Yap, Y.H., & Noorzaei, J. (2012). Properties of high strength concrete using white and dune sands under normal and autoclaved curing. Construction and Building Materials, 27, 218-222.
Asasutjarit, C., Hirunlabh, J., Khedari, J., Charoenvai, S., Zeghmati, B., & Shin, U. C. (2007). Development of coconut coir-based lightweight cement board. Construction and Building Materials, 21, 277-288.
Atis, C. D., & Karahan, O. (2009). Properties of steel fiber reinforced fly ash concrete. Construction and Building Material, 23, 392-399.
Bentchikou, M., Guidoum, A., Scrivener, K., Silhadi, K., & Hanini, S. (2012). Effect of recycled cellulose fibers on the properties of lightweight cement composite matrix. Construction and Building Materials, 34, 451-456.
Bezerra, E.M.., A.P. Joaquim., H. Savastano Jr., V.M. John., & V. Agopyan. (2006). The effect of different mineral additions and synthetic fiber contents on properties of cement based composites. Cement & Concrete Composites, 28, 555-563.
Chang, F. Y., & Wey, M. Y. (2006). Comparison of the characteristics of bottom and fly ashes generated from various incineration processes. Journal of Hazardous Materials, 138, 594-603.
Chen, W. S., Chang, F. C., Shen, Y. H., Tsai, M. S., & Ko, C. H. (2012). Removal of chloride from MSWI fly ash. Journal of Hazardous Materials, 237-238, 116-120.
Chiang, Y. W., Ghyselbrecht, K., Santos, R M., Meesschaert, B., & Martens, J. A. (2012). Synthesis of zeolitic-type adsorbent material from municipal solid waste incinerator bottom ash and its application in heavy metal adsorption. Catalysis Today, 190, 23- 30.
Chimenos, J. M., Fernadez, A. I., Miralles, L., Segarra, M., & Espiell, F. (2003). Waste Management, 23, 887-895.
Connan, H., Klimesch, D., Ray, A., & Thomas, P. (2006). Thermal characterization of autoclaved cement made with alumina-silica rich industrial waste. Journal of Thermal Analysis and Calorimetry, 84(2), 521-525.
Connan, H., Ray, A., Thomas, P., & Guerbois, J. P. (2007). Effect of autoclaving temperature on calcium silicate-based building products containing clay-brick waste. Journal of Thermal Analysis and Calorimetry, 88(1), 115-119.
Crennan, J. M., El-Hemaly, S. A. S., & Taylor, H. F. W. (1997). Autoclaved lime-quartz materials: some factors influencing strength. Cement and Concrete Research, 7, 493-502.
Cullity, B.D. & Stock, S. R. (2001). Elements of X-Ray Diffraction. Upper Saddle: Prentice Hall.
Delvasto, S., Naamant, A. E., & Throne, J. L. (1986). Effect of pressure after casting on high strength fibre reinforced motar. Cement Composite and Lightweight Concrete, 8, 181-190.
Do, C. T., Bentz, D. P., & Stutzman, P. E. (2007). Microstructure and thermal conductivity of hydrated calcium silicate board materials. Journal of Building Physics, 31(1), 55-67.
Dweck, J., Buchler, P. M., Coelho, A. C. V., & Cartledge, F. K. (2000). Hydration of Portland cement blended with calcium carbonate. Thermochimica Acta, 346, 105-113.
Faruk, O., Andrzej, K., Bledzki, A. K., Fink, H. P., & Sain, M. (2012). Biocomposites reinforced with natural fibers: 2000-2010. Progress in Polymer Science, 37, 1552- 1596.
Filho, D. D. T., Silva, F. A., Fairbairn, E. M. R., & Filho, J. A. M. (2009). Durability of compression molded sisal fiber reinforced motar laminates. Construction and Building Materials, 23, 2409-2420.
Gerven, T. V., Keer, E. V., Arickx, S., Jaspers, M., Wauters, G., & Vandecasteele, C. (2005). Waste Management, 25, 291-300.
Heikala, M., El-Didamony, H., & Morsy, M. S. (2000). Limestone-filled pozzolanic cement. Cement and Concrete Research, 30, 1827-1834.
Hong, S. Y., & Glasser, F. P. (2004). Phase relations in the CaO-SiO2-H2O system to 200℃ at saturated steam pressure. Cement and Concrete Research, 34, 1529-1534.
Huang, X., Jiang, D., & Tan, S. (2002). Novel hydrothermal synthesis method for tobermorite fibers and investigation on their thermal stability. Material Research Bulletin, 37, 1885-1892.
Izquierdo, M., Querol, X., Josab, A., Vazquez, E., & López-Soler, A. (2008). Comparison between laboratory and field leachability of MSWI bottom ash as a road material. Science of the total environment, 389, 10-19.
Jamshidi, M., & Ramezanianpour, A. A. (2011). Laboratory and industrial investigations on hybrid of acrylic and glass short fibers as an alternative for substituting asbestos in hatschek process. Construction and Building Materials, 25, 298-302.
Jing, Z., Jin, F., Yamasaki, N., Maeda, H., & Ishida, E. H. (2009). Potential utilization of riverbed sediments by hydrothermal solidification and its hardening mechanism. Journal of Environmental Management, 90, 1744-1750.
Jing, Z., Matsuoka, N., Jin, F., Hashida, T., & Yamasaki, N. (2007). Municipal incineration bottom ash treatment using hydrothermal solidification. Waste Management, 27, 287-293.
Khorami, M., & Ganjian, E. (2011). Comparing flexural behavior of fiber-cement composites reinforced bagasse: Wheat and eucalyptus. Construction and Building materials, 25, 3661-3667.
Klimescha, D. S., & Ray, R. (1999). DTA-TGA evaluations of the CaO-Al2O3-SiO2-H2O system treated hydrothermally. Thermochimica Acta, 334, 115-122.
Kuder, K. G., & Shah, S. P. (2010). Processing of high-performance fiber-reinforced cement-based composites. Construction and Building Materials, 24, 181-186.
Kuo, W. T., Liu, C. C., & Su, D. S. (2013). Use of washed municipal solid waste incinerator bottom ash in pervious concrete. Cement & Concrete Composites, 37, 328-335.
Laukaitis, A., Keriene, J., Kligys, M., Mikulskis, D., & Lekunaite, L. (2012). Influence of mechanically treated carbon fibre additives on structure formation and properties of autoclaved aerated concrete. Construction and Building Materials, 26, 362-371.
Li, X. G., Lv, Y., Ma, B. G., Chen, Q. B., Yin, X. B., & Jian, S. W. (2012). Utilization of municipal solid waste incineration bottom ash in blended cement. Journal of Cleaner Production, 32, 96-100.
Lin, K. L., & Lin, D. F. (2006). Hydration characteristics of municipal solid waste incinerator bottom ash slag as a pozzolanic material for use in cement. Cement & Concrete Composites, 28, 817-823.
Mai, Y. W., Hakeem, M. I., & Cotterell, B. (1983). Effect of water and bleaching on the mechanical properties of cellulose fibre cements. Journal of Materials Science, 18, 2156-2162.
Miles, W. J. (1994). Chemical method of analysis for crystalline silica a critical literature review. Analytica Chimica Acta, 286, 3-7.
Mitsuda, T., Sasaki, K., & Ishida, H. (1992). Phase Evolution during Autoclaving Process of Aerated Concrete. Journal of the American Ceramic Society, 75(7), 1858-1863.
Mohr, B. J., Biernacki, J. J., & Kurtis, K. E. (2006) Microstructural and chemical effects of wet/dry cycling on pulp fiber-cement composites. Cement and Concrete Research, 36, 1240-1251.
Okafor, F. O., Eze-Uzomaka, O. J., & Egbuniwe, N. (1996). The structural properties and optimum mix proportions of palmnut fibre-reinforced mortar composite. Cement and Concrete Research, 26(7), 1045-1055.
Park, S. B., Lee, B. I., & Lim, Y. S. (1991). Experimental study on the engineering properties of carbon fiber reinforced cement composite. Cement and Concrete Research, 21, 589-600.
Park, S. B., Yoon, E. S., & Lee, B. I. (1999). Effect of processing and materials variations on mechanical properties of lightweight cement composites. Cement and Concrete Research, 29, 193-200.
Pavasars, I. (2000). Composition of organic matter in bottom ash from MSWI. Waste Management Series, 1, 241-246.
Polettini, A., Pomi, R., & Fortuna, E. (2009). Chemical activation in view of MSWI bottom ash recycling in cement-based systems. Journal of Hazardous Materials, 162, 1292-1299.
Polettini, A., Pomi, R., Sirini, P., & Testa, F. (2001). Properties of portland cement-stabilized MSWI fly ashes. Journal of Hazardous Materials, 88, 123-138.
Ramachandran, V. S. (1988). Thermal analyses of cement components hydrated in the presence of calcium carbonate. Thermochimica Acta, 127, 385-394.
Shao, Y., Qiu, J., & Shah, S. P. (2001). Microstructure of extruded cement-bonded fiberboard. Cement and Concrete Research, 31, 1153-1161.
Shaw, S., Clark, S. M., & Henderson, C. M. B. (2000). Hydrothermal formation of the calcium silicate hydrates, tobermorite (Ca5Si6O16(OH)2∙4H2O) and xonotlite(Ca6Si6O17(OH)2): an in situ synchrotron study. Chemical Geology , 167, 129-140.
Shen, B., Hubler, M., Paulino, G. H., & Struble, L. J. (2008). Functionally-graded fiber-reinforced cement composite: Processing, microstructure, and properties. Cement and Concrete Composite, 30, 663-673.
Shoukry, H., Kotkata, M. F., Abo-el-Enein, S. A., & Morsy, M. S. (2013). Flexural strength and physical properties of fiber reinforced nano metakaolin cementitious surface compound. Construction and Building Material, 43, 453-460.
Tsunematsu, S., Inoue, K., Kimura, K., & Yamada, H. (2004). Improvement of acid resistance of calcium silicate hydrate by thermal treatment. Cement and Concrete Research, 34, 717-720.
Vu, D. H., Wang, K. S., Chen, J. H., Nam, B. X., & Bac, B. H. (2012). Glass-ceramic from mixtures of bottom ash and fly ash. Waste Management, 32, 2306-2314.
Wang, C., Li, K. Z., Li, H. J., Jiao, G. S., Lu, J., & Hou, D. S. (2008). Effect of carbon fiber dispersion on the mechanical properties of carbon fiber-reinforced cement-based composites. Material Science and Engineering, 487, 52-57.
Watanabe, O., & Kitamura, K. (2001) Hydrothermal treatment of a silica sand complex with lime. Journal of the American Ceramic Society, 84(10), 2318-2322.
Wiles, C. C. (1996). Municipal solid waste combustion ash: State-of-the-knowledge. Journal of Hazardous material, 47, 325-344.
Wongkeo, W., & Chaipanich, A. (2010). Compressive strength, microstructure and thermal analysis of autoclaved and air cured structural lightweight concrete made with coal bottom ash and silica fume. Materials Science and Engineering, 527, 3676-3684.
Yazici, H., Yardimci, M. Y., Aydin, S., & Karabulut, A. S. (2009). Mechanical properties of reactive powder concrete containing mineral admixtures under different curing regimes. Construction and Building Materials, 23, 1223-1231.
Zermeno, R. V., Formosa, J., Chimenos, J. M., Martinez, M., & Fernandez, A. I. (2013). Aggregate material formulated with MSWI bottom ash and APC fly ash for use as secondary building material. Waste Management , 33, 621-627.
Zhao, Y., Zhang, Y., Chen, T., Chen, Y., & Bao, S. (2012). Preparation of high strength autoclaved bricks from hematite tailing. Construction and Building Materials, 28, 450-455.
Zivica, V., & Krizma, M. (2011). Dependence of efficiency of pressure compaction on the cement type used. Construction and Building Materials, 25, 3073-3077.
中華民國鋼結構協會,鋼骨建築非結構牆參考手冊,台北,2007。
史小興、金劍,建築工程纖維應用技術,第一版,化學工業出版社,北京,2008。
朱建根,輕質纖維增強水泥板生產與應用,新型建築材料,第6期,第21~22頁,1995。
行政院環境保護署公告,一般廢棄物~垃圾焚化廠焚化底渣再利用管理方式,2010。
行政院環境保護署網站,http://www.epa.gov.tw/。
何寬宏,垃圾焚化底渣吸附鉻酸離子之可行性研究,國立成功大學環境工程研究所,碩士論文,2000。
吳品漢,以水洗法去除底渣氯鹽之可行性評估及底渣中重金屬相態變遷之探討,國立中興大學環境工程學系,碩士論文,2008。
呂岳勳,台灣輕隔間牆耐震研究,國立成功大學建築研究所,碩士論文,2011。
李大江、俞友明、林鵬,木灰比對水泥纖維板吸聲性能與導熱性能的影響,中國建材科技,第二期,2010。
李志偉,細粒徑都市垃圾焚化底渣水萃及磷酸穩定配合燒結資源化之研究,淡江大學水資源及環境工程學系,碩士論文,2004。
周志遠,高溫對玻璃纖維混凝土影響之研究,中原大學土木工程學系,碩士論文,2004。
周尚義,去除垃圾焚化底渣中水溶性氯離子之研究,東南科技大學防災科技研究所,碩士論文,2010。
周鈺蓉,脫硫渣製備tobermorite濾材及其應用於重金屬回收之研究,國立成功大學環境工程學系,碩士論文,2011。
林智賢,火災學,華香園出版社,2010。
倪文,矽鈣石型矽酸鈣保溫材料的特點與發展趨勢,新材料產業,第11期,第32~35頁,2002。
財團法人臺灣營建研究院、中興工程顧問公司,垃圾焚化底灰資源化再製品試作驗證報告,台北,2003。
張君、李啟宏、趙金平,擠壓脫水與普通澆築成型纖維水泥板性能比對,建築材料學報,第14卷,第2期,2011。
陳清齊,在資源化水泥纖維板之研究,台北科技大學,碩士論文,2002。
馮銘、楊聰武,淺談矽酸鈣板的生產與應用,新型建築材料,第39卷,第11期,2012。
黃兆龍,混凝土性質與行為,第三版,詹氏書局,台北,2002。
黃靖云,不同養護條件對都市垃圾焚化底渣中重金屬溶出特性之影響,嘉南藥理科技大學環境工程與科學系,碩士論文,2008。
賈同春、霍學雷、趙秀雲,脫硫石膏在紙面石膏板生產中應用,建築石膏與膠凝材料,中國,2004。
鄒哲宗、尹華文、林天書、夏滄琪,利用紙廠污泥製造纖維水泥板及其性質之研究,台灣林業科學,第13卷,第4期,第365~372頁,1998。
雷揚中,焚化爐底碴應用於道路工程之研究,國 立 中 央 大 學土木工程研究所,碩士論文,2004。
劉玉雯,輕質竹材水泥板於營建工程應用之研究,內政部建築研究所委託研究報告,2007。
鄭日鏡,淺談纖維增強矽酸鈣板的蒸壓過程,福建建材,第二期,2011。
蕭震銘, 建築材料熱傳導性質對燃燒行為之影響研究,國立高雄第一科技大學環境與安全衛生工程系,碩士論文,2011。
應珊珊、錢曉倩、詹樹林,奈米碳酸鈣對蒸壓加氣混凝土性能的影響,矽酸鹽通報,第30卷,第6期,2011。
環球水泥股份有限公司,http://www.ucctw.com/ucctw/index.php。
謝文博、彭耀南,成型壓力對低水膠比水泥漿體蒸壓養護效能之研究,國立交通大學土木工程學系,碩士論文,1999。
蘇文亮,都市垃圾焚化底渣水萃細泥再生耐火石膏板之研究,淡江大學水資源及環境工程學系,碩士論文,2009。
顧宜,複合材料,新文京開發出版社,台北,2002。