簡易檢索 / 詳目顯示

研究生: 蔡怡昉
Tsai, Yi-Fang
論文名稱: 從游離 DNA 中使用全外顯子定序技術檢定胎兒染色體區域性拷貝數變異
Testing fetal subchromosomal copy number variation by cfDNA with whole exome sequencing
指導教授: 鄭順林
Jeng, Shuen-Lin
學位類別: 碩士
Master
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 60
中文關鍵詞: 資料導向模擬非侵入性產前染色體檢測全外顯子定序拷貝數變異西屋法則
外文關鍵詞: Data driven simulation, NIPT, Whole exome sequencing, CNV, Western Electric rules
相關次數: 點閱:79下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 醫學為孕婦提供了多種產前檢測,以確保胎兒是否有染色體遺傳疾病的風 險。其中一個現在常用的技術是非侵入性產前胎兒檢測 (NIPT)。該檢測利用孕婦血液中小片段的游離 DNA 來分析,因此與其他侵入性產前檢測相比風險較低。在這項研究中,我們研究了來自全外顯子定序而不是全基因組定序的數據,來檢測胎兒是否具有拷貝數變異 (CNV) 的情形。NIPT 的主要挑戰之一是孕婦血液中的胎兒 DNA比例較低, 所以含有胎兒的資訊量較少。現在的方法和工具通常針對整個染色體或特定小範圍 DNA 的CNV。我們的目標是在不同水準的胎兒比例之下檢測三種不同大小的染色體拷貝數變異。考慮的變體大小包括小範圍 (1∼5 Mb)、大範圍 (5 Mb ∼ 一半的染色體) 和全範圍。本研究的新穎之處在於:(1) 通過資料導向的模擬找到強大的檢定統計量及其臨界值;(2) 運用統計製程管制中的西屋法則並將調整過後的西屋法則應用於統計檢定上。

    Modern medicine offers a pregnant woman several prenatal screening tests to ensure whether the fetus has a risk of chromosomal conditions. One of the reliable techniques is the noninvasive prenatal testing (NIPT). This testing analyzes small fragments of DNA that circulate in a pregnant woman’s blood, so it’s low risk, relatively to other invasive prenatal tests. In this study, we investigated the data from whole exome sequencing (WES) instead of whole-genome sequencing (WGS) to detect copy number variation (CNV) of a fetal. One of the major challenges in NIPT is the low fetal fraction of DNA in the pregnant woman’s blood and therefore the low amount of information containing the fetus. The current methods and tools usually target the CNV size for whole chromosome or a specific short range of DNA. Our goal is to detect chromosome variants of three different sizes under various level of fetal fraction. The considered variants sizes include small range (1∼5 Mb), large range (5 Mb∼half chromosome), and full range. The novel parts of this research are: (1) find the powerful test statistic and their critical values through a data driven simulation; (2) apply modified Western Electric rules in statistical process control method to the test statistic.

    摘要 i Abstract ii 誌謝 iii Table of Contents v List of Tables vii List of Figures viii Chapter 1. Introduction 1 1.1. Background and motivation 1 1.2. Motivated dataset 2 1.2.1. MF1 dataset 2 1.2.2.MF2 dataset 3 1.2.3. Challenges of the dataset 7 1.3. Novelty of our study 10 1.4. Flow chart of our study 10 Chapter 2. Literature Review 13 2.1. Tools for CNV detection by WGS 13 2.1.1. General CNV 13 2.1.2. Fetal CNV 13 2.2. Tools for CNV detection by WES 14 2.2.1. General CNV 14 2.2.2. Fetal CNV 14 2.3. Statistical process control 14 2.4. Data driven simulation 15 2.5. Summary 15 Chapter 3. Methodology 17 3.1. Methods for Comparing 17 3.1.1. cn.MOPS 17 3.1.2. Exome Depth 18 3.1.3. slogRCR 19 3.1.4. Z-score 19 3.1.5. Summary 22 3.2. Hypothesis testing 22 3.2.1. Moving average and consecutive rule 23 3.2.2. Detection rule 25 3.2.3. CNV calling 26 Chapter 4. Implement of DDS-fetal pipeline 28 4.1. Pre-processing 28 4.2. Simulation 29 4.3. Test results 42 4.4. Summary 47 Chapter 5. Conclusion 49 5.1. Summary 49 5.2. Future research 49 References 51 Appendix A. Read counts plot for 4 cases. (250 exons) 54 Appendix B. Comparing power and Typr I error under different smoothing range r with significant level 0.05. 57 Appendix C. Result of other tools 60

    [1] Chen, K., Wallis, J. W., McLellan, M. D., Larson, D. E., Kalicki, J. M., Pohl, C. S., McGrath, S. D., Wendl, M. C., Zhang, Q., Locke, D. P., et al. Breakdancer: an algorithm for high-resolution mapping of genomic structural variation. Nature methods 6, 9 (2009), 677–681.
    [2] Chen, X., Jiang, Y., Chen, R., Qi, Q., Zhang, X., Zhao, S., Liu, C., Wang, W., Li, Y., Sun, G., et al. Clinical efficiency of simultaneous cnv-seq and whole-exome sequencing for testing fetal structural anomalies. Journal of translational medicine 20, 1 (2022), 1–13.
    [3] de Ligt, J., Boone, P. M., Pfundt, R., Vissers, L. E., Richmond, T., Geoghegan, J., O’Moore, K., de Leeuw, N., Shaw, C., Brunner, H. G., et al. Detection of clinically relevant copy number variants with whole-exome sequencing. Human Mutation 34, 10 (2013), 1439–1448.
    [4] Hu, H., Wang, L., Wu, J., Zhou, P., Fu, J., Sun, J., Cai, W., Liu, H., and Yang, Y. Noninvasive prenatal testing for chromosome aneuploidies and subchromosomal microdeletions/microduplications in a cohort of 8141 single pregnancies. Human genomics 13, 1 (2019), 1–9.
    [5] Jain, S. R., Sim, W., Ng, C. H., Chin, Y. H., Lim, W. H., Syn, N. L., Kamal, N. H. B. A., Gupta, M., Heong, V., Lee, X. W., et al. Statistical process control charts for monitoring next-generation sequencing and bioinformatics turnaround in precision medicine initiatives. Frontiers in Oncology (2021), 3893.
    [6] Jeng, S.-L., Chi, Y.-C., Ma, M.-C., Chan, S.-H., and Sun, H. S. Gene expression analysis of combined rna-seq experiments using a receiver operating characteristic calibrated procedure. Computational Biology and Chemistry 93 (2021), 107515.
    [7] Klambauer, G., Schwarzbauer, K., Mayr, A., Clevert, D.-A., Mitterecker, A., Bodenhofer, U., and Hochreiter, S. cn. mops: mixture of poissons for discovering copy number variations in next-generation sequencing data with a low false discovery rate. Nucleic acids research 40, 9 (2012), e69–e69.
    [8] Lefkowitz, R. B., Tynan, J. A., Liu, T., Wu, Y., Mazloom, A. R., Almasri, E., Hogg, G., Angkachatchai, V., Zhao, C., Grosu, D. S., et al. Clinical validation of a noninvasive prenatal test for genomewide detection of fetal copy number variants. American journal of obstetrics and gynecology 215, 2 (2016), 227–e1.
    [9] Malaysia, B. P. S., Santhanasamy, D. K., and Abdul-Rahman, A. Robustification of shewhart control chart by median based estimators: A study on malaysia stock data. Journal of Quality Measurement and Analysis JQMA 18, 1 (2022), 13–26.
    [10] Plagnol, V., Curtis, J., Epstein, M., Mok, K. Y., Stebbings, E., Grigoriadou, S., Wood, N. W., Hambleton, S., Burns, S. O., Thrasher, A. J., et al. A robust model for read 51 count data in exome sequencing experiments and implications for copy number variant calling. Bioinformatics 28, 21 (2012), 2747–2754.
    [11] Rausch, T., Zichner, T., Schlattl, A., Stütz, A. M., Benes, V., and Korbel, J. O. Delly: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 28, 18 (2012), i333–i339.
    [12] Straver, R., Sistermans, E. A., Holstege, H., Visser, A., Oudejans, C. B., and Reinders, M. J. Wisecondor: detection of fetal aberrations from shallow sequencing maternal plasma based on a within-sample comparison scheme. Nucleic acids research 42, 5 (2014), e31–e31.
    [13] Van Opstal, D., van Veen, S., Joosten, M., Diderich, K. E., Govaerts, L. C., Polak, J., van Koetsveld, N., Boter, M., Go, A. T., Papatsonis, D. N., et al. Placental studies elucidate discrepancies between nipt showing a structural chromosome aberration and a differently abnormal fetal karyotype. Prenatal Diagnosis 39, 11 (2019), 1016–1025.
    [14] Wang, J.-w., Lyu, Y.-n., Qiao, B., Li, Y., Zhang, Y., Dhanyamraju, P. K., Bamme, Y., Yu, M. D., Yang, D., and Tong, Y.-q. Cell-free fetal dna testing and its correlation with prenatal indications. BMC Pregnancy and Childbirth 21, 1 (2021), 1–9.
    [15] Whitford, W., Lehnert, K., Snell, R. G., and Jacobsen, J. C. Evaluation of the performance of copy number variant prediction tools for the detection of deletions from whole genome sequencing data. Journal of biomedical informatics 94 (2019), 103174.
    [16] Wes vs. wgs vs. custom panels. https://sequencing.roche.com/en-us/scienceeducation/education/articles/wes-wgs-custom.html.
    [17] Yin, L., Tang, Y., Lu, Q., Shi, M., Pan, A., and Chen, D. Noninvasive prenatal testing detects microdeletion abnormalities of fetal chromosome 15. Journal of Clinical Laboratory Analysis 33, 6 (2019), e22911.
    [18] Yu, D., Zhang, K., Han, M., Pan, W., Chen, Y., Wang, Y., Jiao, H., Duan, L., Zhu, Q., Song, X., et al. Noninvasive prenatal testing for fetal subchromosomal copy number variations and chromosomal aneuploidy by low-pass whole-genome sequencing. Molecular genetics & genomic medicine 7, 6 (2019), e674.
    [19] Zare, F., Dow, M., Monteleone, N., Hosny, A., and Nabavi, S. An evaluation of copy number variation detection tools for cancer using whole exome sequencing data. BMC bioinformatics 18, 1 (2017), 1–13.
    [20] Zhao, C., Tynan, J., Ehrich, M., Hannum, G., McCullough, R., Saldivar, J.-S., Oeth, P., van den Boom, D., and Deciu, C. Detection of fetal subchromosomal abnormalities by sequencing circulating cell-free dna from maternal plasma. Clinical chemistry 61, 4 (2015), 608–616.
    [21] Zhao, M., Wang, Q., Wang, Q., Jia, P., and Zhao, Z. Computational tools for copy number variation (cnv) detection using next-generation sequencing data: features and perspectives. BMC bioinformatics 14, 11 (2013), 1–16.
    [22] Zhou, B., Ho, S. S., Zhang, X., Pattni, R., Haraksingh, R. R., and Urban, A. E. Wholegenome sequencing analysis of cnv using low-coverage and paired-end strategies is 52 efficient and outperforms array-based cnv analysis. Journal of medical genetics 55, 11 (2018), 735–743

    無法下載圖示 校內:2027-09-08公開
    校外:2027-09-08公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE