| 研究生: |
何建良 Ho, Chien-Liang |
|---|---|
| 論文名稱: |
耳朵軟骨膜前驅細胞作為軟骨缺損修復或新生的細胞來源 Auricular perichondrial progenitor cells as a cell source for repairing and regeneration of cartilage defects |
| 指導教授: |
謝式洲
Shieh, Shyh-Jou 黃玲惠 Huang, Lynn L.H. |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 臨床醫學研究所 Institute of Clinical Medicine |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 軟骨膜前驅細胞 、軟骨缺損 、軟骨再生 |
| 外文關鍵詞: | Perichondrial progenitor cells, cartilage defect, cartilage regeneration |
| 相關次數: | 點閱:93 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於人體軟骨組織的缺損或變異,使得臨床上出現許多的疾病或功能與外觀的喪失,進而影響生活品質。例如,退化性關節炎,造成每年數萬人必須接受關節置換手術;先天性小耳症,造成先天的耳朵畸形而影響外觀與社交品質。由於軟骨組織生長的環境特殊,較少有血管支配以提供養分,處在相對缺氧的環境,相對的代謝與吸收的速度較低。加上有彈性、耐磨擦的特性,因此能長時間維持一定的體積。然而,軟骨細胞不易生長,且在體外培養容易老化且失去原有軟骨細胞的特性,且軟骨組織不易建造的原因,因而造成軟骨缺損修復不易。許多的研究與策略都不斷的被嘗試著,包含利用有潛能的幹細胞,如骨髓間質幹細胞,脂肪幹細胞等,單獨或合併不同來源的細胞骨架或載體來修復,或建造軟骨組織。但目前應用較為廣泛,成熟且可靠的細胞型態,仍以成熟的自體軟骨細胞為主要的應用對象。由於它的來源受限,且不易體外大量培養,因此有其侷限與限制。若應用幹細胞作為細胞的來源,則又有不易誘導成軟骨的限制。軟骨膜前驅細胞來自耳朵,位於身體表層,較容易取得且傷害較小,不會造成耳朵軟骨外觀的變形。本篇的論文研究主題,希望了解軟骨膜前驅細胞,並希望利用軟骨膜前驅細胞作為軟骨新生或缺損修復的細胞來源,作為日後軟骨新生或軟骨缺損修復的重要角色。
The defect or variation of cartilage tissue has many clinical consequences, resulting in poor quality of life. For example, degenerative arthritis causes tens of thousands of people to undergo joint replacement surgery every year; congenital microtia, whose congenital ear deformities and affects the appearance and social quality. Due to the special growth environment of cartilage tissue, it is dominated by fewer blood or blood vessels, in a relatively hypoxic environment, and the relative metabolism and absorption rate is low. Therefore, it is elastic, abrasion-resistant, and can maintain a certain volume for a long time. However, chondrocytes are not easy to grow, and it is easy to age and lose the characteristics of original chondrocytes when cultured in vitro, which causes difficulty in repairing cartilage defects and the reasons that cartilage tissue is not easy to build. Many kinds of research and strategies are constantly being tried, including the use of potential stem cells, such as bone marrow mesenchymal stem cells, adipose stem cells, etc., alone or in combination with cytoskeletons or carriers from different sources to repair or build cartilage tissue. However, the currently more widely used and reliable cell types are still dominated by mature autologous chondrocytes. Because of its few sources, it is not easy to cultivate in large quantities in vitro, so it has its limitations and limitations. Perichondrial progenitor cells come from the ear and are located on the surface of the body. They are easier to obtain and do not cause damage to the ear cartilage. The research theme of this paper hopes to use perichondrial progenitor cells as one of the cell sources for cartilage regeneration or cartilage defect repair, as an important role in cartilage regeneration or cartilage defect repair in the future.
1. Wachsmuth, L., et al., Immunolocalization of matrix proteins in different human cartilage subtypes. Histol Histopathol, 2006. 21(5): p. 477-85.
2. Isogai, N., et al., Comparison of different chondrocytes for use in tissue engineering of cartilage model structures. Tissue Eng, 2006. 12(4): p. 691-703.
3. Chiang, H.-S. and C.-C. Jiang, Repair of Articular Cartilage Defects: Review and Perspectives. Journal of the Formosan Medical Association, 2009. 108(2): p. 87-101.
4. Lubowitz, J.H. and G.G. Poehling, Saving our cells: advances in tissue engineering for focal cartilage defects. Arthroscopy, 2009. 25(2): p. 115-6.
5. Rim, Y.A., Y. Nam, and J.H. Ju, The Role of Chondrocyte Hypertrophy and Senescence in Osteoarthritis Initiation and Progression. Int J Mol Sci, 2020. 21(7).
6. Primorac, D., et al., Knee Osteoarthritis: A Review of Pathogenesis and State-Of-The-Art Non-Operative Therapeutic Considerations. Genes, 2020. 11(8): p. 854.
7. Shieh, S.J. and J.P. Vacanti, State-of-the-art tissue engineering: from tissue engineering to organ building. Surgery, 2005. 137(1): p. 1-7.
8. Almouemen, N., H.M. Kelly, and C. O'Leary, Tissue Engineering: Understanding the Role of Biomaterials and Biophysical Forces on Cell Functionality Through Computational and Structural Biotechnology Analytical Methods. Comput Struct Biotechnol J, 2019. 17: p. 591-598.
9. Poomathi, N., et al., 3D printing in tissue engineering: a state of the art review of technologies and biomaterials. Rapid Prototyping Journal, 2020. 26(7): p. 1313-1334.
10. van Osch, G.J., S.W. van der Veen, and H.L. Verwoerd-Verhoef, In vitro redifferentiation of culture-expanded rabbit and human auricular chondrocytes for cartilage reconstruction. Plast Reconstr Surg, 2001. 107(2): p. 433-40.
11. Chaipinyo, K., B.W. Oakes, and M.P. Van Damme, The use of debrided human articular cartilage for autologous chondrocyte implantation: maintenance of chondrocyte differentiation and proliferation in type I collagen gels. J Orthop Res, 2004. 22(2): p. 446-55.
12. Minas, T., et al., Autologous Chondrocyte Implantation "Sandwich" Technique Compared With Autologous Bone Grafting for Deep Osteochondral Lesions in the Knee. Am J Sports Med, 2018. 46(2): p. 322-332.
13. Gigante, A., et al., Membrane-seeded autologous chondrocytes: cell viability and characterization at surgery. Knee Surg Sports Traumatol Arthrosc, 2007. 15(1): p. 88-92.
14. Pei, M., et al., Engineering of functional cartilage tissue using stem cells from synovial lining: a preliminary study. Clin Orthop Relat Res, 2008. 466(8): p. 1880-9.
15. Zhang, X., et al., Mesenchymal progenitor cells derived from chorionic villi of human placenta for cartilage tissue engineering. Biochem Biophys Res Commun, 2006. 340(3): p. 944-52.
16. Uematsu, K., et al., Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold. Biomaterials, 2005. 26(20): p. 4273-9.
17. Wei, Y., et al., A novel injectable scaffold for cartilage tissue engineering using adipose-derived adult stem cells. J Orthop Res, 2008. 26(1): p. 27-33.
18. Tabet, S.K., et al., The Use of Hypothermically Stored Amniotic Membrane for Cartilage Repair: A Sheep Study. Stem Cell Discovery, 2015. 5(4): p. 62-71.
19. Oliveira, J.T., et al., Performance of new gellan gum hydrogels combined with human articular chondrocytes for cartilage regeneration when subcutaneously implanted in nude mice. J Tissue Eng Regen Med, 2009. 3(7): p. 493-500.
20. Tan, H., et al., Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials, 2009. 30(13): p. 2499-506.
21. Iwasa, J., et al., Clinical application of scaffolds for cartilage tissue engineering. Knee Surg Sports Traumatol Arthrosc, 2009. 17(6): p. 561-77.
22. Jian-Wei, X., et al., Producing a flexible tissue-engineered cartilage framework using expanded polytetrafluoroethylene membrane as a pseudoperichondrium. Plast Reconstr Surg, 2005. 116(2): p. 577-89.
23. Mohan, N., P.D. Nair, and Y. Tabata, A 3D biodegradable protein based matrix for cartilage tissue engineering and stem cell differentiation to cartilage. J Mater Sci Mater Med, 2009. 20 Suppl 1: p. S49-60.
24. Shieh, S.J., S. Terada, and J.P. Vacanti, Tissue engineering auricular reconstruction: in vitro and in vivo studies. Biomaterials, 2004. 25(9): p. 1545-57.
25. Parfenov, V.A., et al., Scaffold-free, label-free and nozzle-free biofabrication technology using magnetic levitational assembly. Biofabrication, 2018. 10(3): p. 034104.
26. Huang, K., et al., Cartilage Tissue Regeneration: The Roles of Cells, Stimulating Factors and Scaffolds. Curr Stem Cell Res Ther, 2018. 13(7): p. 547-567.
27. Miljkovic, N.D., G.M. Cooper, and K.G. Marra, Chondrogenesis, bone morphogenetic protein-4 and mesenchymal stem cells. Osteoarthritis Cartilage, 2008. 16(10): p. 1121-30.
28. Ma, Z., et al., Cartilage tissue engineering PLLA scaffold with surface immobilized collagen and basic fibroblast growth factor. Biomaterials, 2005. 26(11): p. 1253-9.
29. Longo, U.G., et al., Stem Cells and Gene Therapy for Cartilage Repair. Stem Cells International, 2012. 2012: p. 128-136.
30. Capito, R.M. and M. Spector, Collagen scaffolds for nonviral IGF-1 gene delivery in articular cartilage tissue engineering. Gene Ther, 2007. 14(9): p. 721-32.
31. Arai, F., et al., Mesenchymal stem cells in perichondrium express activated leukocyte cell adhesion molecule and participate in bone marrow formation. J Exp Med, 2002. 195(12): p. 1549-63.
32. Duynstee, M.L., et al., The dual role of perichondrium in cartilage wound healing. Plast Reconstr Surg, 2002. 110(4): p. 1073-9.
33. Togo, T., et al., Identification of cartilage progenitor cells in the adult ear perichondrium: utilization for cartilage reconstruction. Lab Invest, 2006. 86(5): p. 445-57.
34. Alvarez, J., et al., The perichondrium plays an important role in mediating the effects of TGF-beta1 on endochondral bone formation. Dev Dyn, 2001. 221(3): p. 311-21.
35. Dounchis, J.S., R.D. Coutts, and D. Amiel, Cartilage repair with autogenic perichondrium cell/polylactic acid grafts: a two-year study in rabbits. J Orthop Res, 2000. 18(3): p. 512-5.
36. Wierzchowski, K. and M. Pilarek, Microcarrier-Supported Culture of Chondrocytes in Continuously Rocked Disposable Bioreactor. Methods Mol Biol, 2022. 2436: p. 145-156.
37. Surrao, D.C., et al., Can microcarrier-expanded chondrocytes synthesize cartilaginous tissue in vitro? Tissue Eng Part A, 2011. 17(15-16): p. 1959-67.
38. Cox, J., et al., Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res, 2011. 10(4): p. 1794-805.
39. Cox, J. and M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol, 2008. 26(12): p. 1367-72.
40. Eichelbaum, K., et al., Selective enrichment of newly synthesized proteins for quantitative secretome analysis. Nat Biotechnol, 2012. 30(10): p. 984-90.
41. Gillis, J.A., The development and evolution of cartilage. Elsevier Reference Module in Life Sciences: Developmental Biology. Amsterdam, Elsevier, 2019: p. 1-13.
42. Minas, T. and S. Nehrer, Current concepts in the treatment of articular cartilage defects. Orthopedics, 1997. 20(6): p. 525-538.
43. Zaslav, K., et al., A prospective study of autologous chondrocyte implantation in patients with failed prior treatment for articular cartilage defect of the knee: results of the Study of the Treatment of Articular Repair (STAR) clinical trial. The American journal of sports medicine, 2009. 37(1): p. 42-55.
44. Lv, F.-J., et al., Concise review: the surface markers and identity of human mesenchymal stem cells. Stem cells, 2014. 32(6): p. 1408-1419.
45. Kobayashi, S., et al., Presence of cartilage stem/progenitor cells in adult mice auricular perichondrium. PLoS One, 2011. 6(10): p. e26393.
46. Kobayashi, S., et al., Reconstruction of human elastic cartilage by a CD44+ CD90+ stem cell in the ear perichondrium. Proceedings of the National Academy of Sciences, 2011. 108(35): p. 14479-14484.
47. Meretoja, V.V., et al., Enhanced chondrogenesis in co-cultures with articular chondrocytes and mesenchymal stem cells. Biomaterials, 2012. 33(27): p. 6362-6369.
48. Lv, X., et al., Chondrogenesis by co-culture of adipose-derived stromal cells and chondrocytes in vitro. Connective Tissue Research, 2012. 53(6): p. 492-497.
49. Tsuchiya, K., et al., The effect of coculture of chondrocytes with mesenchymal stem cells on their cartilaginous phenotype in vitro. Materials science and engineering: C, 2004. 24(3): p. 391-396.
50. Chang, Y.S., et al., Human umbilical cord blood-derived mesenchymal stem cells attenuate hyperoxia-induced lung injury in neonatal rats. Cell transplantation, 2009. 18(8): p. 869-886.
51. Yang, Y.-H., A.J. Lee, and G.A. Barabino, Coculture-driven mesenchymal stem cell-differentiated articular chondrocyte-like cells support neocartilage development. Stem cells translational medicine, 2012. 1(11): p. 843-854.
52. Wong, T.Y., et al., Hyaluronan keeps mesenchymal stem cells quiescent and maintains the differentiation potential over time. Aging Cell, 2017. 16(3): p. 451-460.
53. Ashraf, S., et al., Regulation of senescence associated signaling mechanisms in chondrocytes for cartilage tissue regeneration. Osteoarthritis and cartilage, 2016. 24(2): p. 196-205.
54. Maruyama, T., et al., The balance of WNT and FGF signaling influences mesenchymal stem cell fate during skeletal development. Science signaling, 2010. 3(123): p. ra40-ra40.
55. Côrtes, I., et al., A scaffold-and serum-free method to mimic human stable cartilage validated by secretome. Tissue Engineering Part A, 2021. 27(5-6): p. 311-327.
56. Legendre, F., et al., Enhanced chondrogenesis of bone marrow-derived stem cells by using a combinatory cell therapy strategy with BMP-2/TGF-β1, hypoxia, and COL1A1/HtrA1 siRNAs. Scientific reports, 2017. 7(1): p. 1-16.
57. Grimaud, E., D. Heymann, and F. Rédini, Recent advances in TGF-β effects on chondrocyte metabolism: potential therapeutic roles of TGF-β in cartilage disorders. Cytokine & growth factor reviews, 2002. 13(3): p. 241-257.
58. Stone, R.N., et al., Decellularized Porcine Cartilage Scaffold; Validation of Decellularization and Evaluation of Biomarkers of Chondrogenesis. International Journal of Molecular Sciences, 2021. 22(12): p. 6241.