簡易檢索 / 詳目顯示

研究生: 陳佑亦
Chen, You-Yi
論文名稱: 姬蝴蝶蘭D-群MADS-box基因PeMADS7之功能探討
Functional characterization of D-class MADS-box gene PeMADS7 from Phalaenopsis equestris
指導教授: 蔡文杰
Tsai, Wen-Chieh
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 熱帶植物科學研究所
Institute of Tropical Plant Sciences
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 57
中文關鍵詞: 姬蝴蝶蘭胚珠MADS-boxD群基因
外文關鍵詞: Phalaenopsis equestris, ovules, MADS-box, D-class genes
相關次數: 點閱:139下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蝴蝶蘭是世界上重要的園藝作物,其完美的花型具有高度的觀賞價值。蘭花胚珠發育過程受到授粉作用精確的調控,也使得蘭花胚珠發育有別於一般的被子植物。前人研究中,矮牽牛的MADS-box D-群基因FLORAL BINDING PROTEIN7 (FBP7) 與 FBP11對調控胚珠的發育扮演重要的角色,且FBP7與 FBP11也與阿拉伯芥中的SEEDSTICK (STK)功能非常相似,也會專一性的表現在胚珠當中,表示這些基因屬於直系同源的基因。此外,在酵母菌雙雜合系統分析中,矮牽牛的FB7與 FBP11會與矮牽牛中的E-群SEP-like作用。同樣的,阿拉伯芥中的SEEDSTICK,也會與阿拉伯芥中的SEP-like作用。在本研究中,我們從姬蝴蝶蘭中選殖出MADS-box D-群基因PeMADS7,並分析其功能。結果顯示,PeMADS7基因表現於花苞發育時期,同時也高量表現在生殖組織與胚珠發育時期。此外,我們利用酵母菌雙雜合及三雜合系統分析C群、D群和E群蛋白質的相互作用關係。實驗證實PeMADS7蛋白能與姬蝴蝶蘭中的E-群PeSEP蛋白作用。而在轉基因阿拉伯芥中,過量表現PeMADS7造成葉部生長捲曲及花部發育不正常,導致花萼及花瓣變短的表現型。且與野生型比較,轉殖株也延長了開花的壽命。另一方面,也因為長角果內部種子發育呈不規則排列,進而導致長角果發育逐漸彎曲。以上這些研究結果可以提供我們對於蝴蝶蘭D-群基因調控胚珠的發育有更進一步的了解。

    Phalaenopsis species is one of the important horticultural plants in the world, and the spectacular flowers have highly ornamental value. In orchids, the ovule development is precisely regulated by pollination events, which is different from other angiosperm. Previous studyies show that D-class MADS box genes FLORAL BINDING PROTEIN7 (FBP7) and FBP11 play crucial roles in petunia ovule identity. In Arabidopsis the SEEDSTICK (STK) specialize ovule development, suggesting that it is an orthologous gene of FBP7 and FBP11. Furthermore, yeast two-hybrid assay showed that FBP7 and FBP11 proteins have ability to interact with E-class SEP-like proteins. Similarly, SEEDSTICK interacts with the SEP-like proteins in Arabidopsis. In this study, PeMADS7, a D-class like-gene from the Phalaenopsis equestris, was cloned and characterized its function. Results showed show that the transcript of PMADS7 began to accumulate in the floral buds and it continued to express through all the flower developmental stages. In addition, PeMADS7 was expressed strongly in developing ovulus. Protein interaction relationships among C-class, D-class and E-class proteins were assessed by using both yeast two hybrid and three hybrid analyses. PeMADS7 protein had ability to interact with E-class PeSEP proteins. Transgenic Arabidopsis plants overexpressing PeMADS7 caused the curly leaves and abnormal flowers with short sepals and petals. In addition, the flower of the transgenic plant showed an enhanced longevity than that of wild-type plant. Furthermore, the siliques were bended because of irregular arrangement of the seeds. These results provide us very useful information on the regulatory mechanism of ovule development in orchids.

    中文摘要 ii Abstract iii 致謝 v List of Tables ix List of Figures x 1. Introduction 1.1 Orchid Biology 1.1.1 Evolution of Orchidaceae 1 1.1.2 Reproductive biology of orchids 2 1.1.3 Unique control system of orchid ovule development 3 1.1.4 Post-pollination changes in Phalaenopsis orchid 4 1.1.5 Ovule morphology of Phalaenopsis orchid 5 1.2 MADS-box gene family of the floral organ development 6 1.3 MADS-box D-class genes 1.3.1 D-class gene function in Petunia and Arabidopsis (Dicot plants) 7 1.3.2 D-class gene function in rice and orchid (Monocot plants) 7 1.4 The floral quartet model 8 1.5 Overlapping functions of MADS-box genes in ovule development 9 2. Aim of the study 10 3. Materials and Methods 3.1 Plant materials and growth conditions 11 3.2 Scanning electron microscopy 11 3.3 Sequence alignments and phylogenetic analysis 12 3.4 Isolation of genomic DNA and Southern blot analysis 12 3.5 RNA extraction and RT-PCR 13 3.6 in situ hybridization 14 3.7 Yeast two and three hybrid analysis 15 3.8 Arabidopsis transformation 17 4. Results 4.1 Flower pollination and ovule morphogenesis of Phalaenopsis 18 4.2 Identification of PeMADS7 MADS-box genes in P. equestris 19 4.3 Phylogenetic relationship of PeMADS7and other MADS-box genes 20 4.4 Genomic organization of PeMADS7 genes 20 4.5 Spatial and temporal expression analysis of PeMADS7 in Phalaenopsis 21 4.6 in situ hybridization of PeMADS7 transcripts 21 4.7 Analysis of protein-protein interactions among PeMADS7 and C-, E-class proteins by using yeast two-hybrid system 22 4.8 Yeast three-hybrid analysis for examination of bridge protein between PeMADS1 and PeMADS7 23 4.9 Functional analysis of the PeMADS7 gene by ectopic expression in Arabidopsis thaliana 23 5. Discussion 5.1 Phalaenopsis D-class MADS-box genes 26 5.2 PeMADS7 may be required for ovule development in Phalaenopsis 26 5.3 The MADS-transcription factor complex involved in ovule development in P. equestris 28 5.4 Ectopic expression of PeMADS7 in Arabidopsis 29 6. References 31 List of Tables Table. 1. List of primers used in this study 39 Table. 2. Comparison of sepal length and petal length in wild-type and transgenic plants overexpressing PeMADS7 40 List of Figures Figure. 1. Structure of Phalaenopsis equestris flower 41 Figure. 2. Scanning electron micrographs of the developing ovule of Phalaenopsis 42 Figure. 3. Alignment of amino acid sequence of PeMADS7 and other D-class genes 43 Figure. 4. Phylogenetic analyses of C- and D-lineages 44 Figure. 5. Southern bolt analysis of PeMADS7 in P. equestris genome 45 Figure. 6. Expression patterns of PeMADS7 in various organs and floral development stages 46 Figure. 7. Expression patterns of PeMADS7 at various developing ovule stages 47 Figure. 8. Expression patterns of PeMADS7 at different late pod developmental stage and protocorm developmental stages 48 Figure. 9. in situ hybridization of PeMADS7 in longitudinal section in developing floral bud 49 Figure. 10. in situ hybridization of PeMADS7 in cross sections in developing ovules 50 Figure. 11. Analysis of protein-protein interactions between D-class PeMADS7 and E-class PeSEP1 and PeSEP2 proteins by yeast two-hybrid system 51 Figure. 12. Analysis of protein-protein interactions among D-class PeMADS7, C- class PeMADS1, E-class PeSEP1 and PeSEP2 proteins by yeast two-hybrid system 52 Figure. 13. Analysis of protein-protein interactions among D-class PeMADS7, C-class PeMADS1 and E-class PeSEP1 and PeSEP2 proteins by yeast three-hybrid system 53 Figure. 14. PCR analysis of transformed Arabidopsis 54 Figure. 15. Phenotypes of leaves and plant size in wild-type and transgenic Arabidopsis overexpress PeMADS7 55 Figure. 16. Phenotypes of flowers and siliques in wild-type and transgenic Arabidopsis overexpress PeMADS7 56

    Angenent, G.C., Franken, J., Busscher, M., Vandijken, A., Vanwent, J.L., Dons, H.J.M. and Vantunen, A.J. (1995) A Novel Class of MADS box genes is involved in ovule development in Petunia. Plant Cell 7: 1569-1582.

    Afzelius, K. (1954) Embryo-sac development in Epipogium aphyllum. Svensk. Bot. Tidskr. 48: 513–520.

    Battaglia, R., Brambilla, V., Colombo, L., Stuitje, A.R. and Kater, M.M. (2006) Functional analysis of MADS-box genes controlling ovule development in Arabidopsis using the ethanol-inducible alc gene-expression system. Mech Dev 123: 267-276.

    Becker, A., Winter, K.U., Meyer, B., Saedler, H. and Theissen, G. (2000) MADS-Box gene diversity in seed plants 300 million years ago. Mol Biol Evol 17: 1425-1434.

    Brambilla, V., Battaglia, R., Colombo, M., Masiero, S., Bencivenga, S., Kater, M.M. and Colombo, L. (2007) Genetic and molecular interactions between BELL1 and MADS box factors support ovule development in Arabidopsis. Plant Cell 19: 2544-2556.

    Chong, L. (2001) Molecular cloning - A laboratory manual, 3rd edition. Science 292: 446-446.

    Christenson, E.A. (2001) Phalaenopsis : A Monograph. Timber Press, Portland, Or.
    Colombo, L., Franken, J., Koetje, E., Vanwent, J., Dons, H.J.M., Angenent, G.C. and Vantunen, A.J. (1995) The Petunia Mads Box Gene Fbp11 Determines Ovule Identity. Plant Cell 7: 1859-1868.

    Crane, P.R., Friis, E.M. and Pedersen, K.R. (1995) The Origin and Early Diversification of Angiosperms. Nature 374: 27-33.

    Darwin, C. (1979) Fertilization of orchids by insects. E. M. Coleman, Stanfordville, N.Y.

    Dreni, L., Jacchia, S., Fornara, F., Fornari, M., Ouwerkerk, P.B.F., An, G.H., Colombo, L. and Kater, M.M. (2007) The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice. Plant J 52: 690-699.

    Duncan, R.E. and Curtis, J.T. (1942) Intermittent Growth of Fruits of Cypripedium and Paphiopedilum. A Correlation of the Growth of Orchid Fruits with their Internal Development. Bulletin of the Torrey Botanical Club 69: 353-359.

    Duncan, R.E. and Curtis, J.T. (1943) Growth of Fruits in Cattleya and allied genera in the Orchidaceae. Bulletin of the Torrey Botanical Club 70: 104-119.

    Egea-Cortines, M., Saedler, H. and Sommer, H. (1999) Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J 18: 5370-5379.

    Favaro, R., Immink, R.G., Ferioli, V., Bernasconi, B., Byzova, M., Angenent, G.C., Kater, M. and Colombo, L. (2002) Ovule-specific MADS-box proteins have conserved protein-protein interactions in monocot and dicot plants. Mol Genet Genomics 268: 152-159.

    Favaro, R., Pinyopich, A., Battaglia, R., Kooiker, M., Borghi, L., Ditta, G., Yanofsky, M.F., Kater, M.M. and Colombo, L. (2003) MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell 15: 2603-2611.

    Fredrikson, M. (1991) An Embryological Study of Platanthera-bifolia (Orchidaceae). Plant Syst Evol 174: 213-220.

    Fredrikson, M. (1992) The Development of the Female Gametophyte of Epipactis (Orchidaceae) and Its Inference for Reproductive Ecology. Am J Bot 79: 63-68.

    Gietz, D., St Jean, A., Woods, R.A. and Schiestl, R.H. (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20: 1425.

    Gill, D. E. 1989. "Fruiting failure, pollinator inefficiency, and speciation in orchids," Sinauer Associates, Sunderland, MA.

    Honma, T. and Goto, K. (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409: 525-529.

    Hsu, H.F., Hsieh, W.P., Chen, M.K., Chang, Y.Y. and Yang, C.H. (2010) C/D Class MADS Box Genes from Two Monocots, Orchid (Oncidium Gower Ramsey) and Lily (Lilium longiflorum), Exhibit Different Effects on Floral Transition and Formation in Arabidopsis thaliana. Plant and Cell Physiology 51: 1029-1045.

    Hsu, C.C., Chung, Y.L., Chen, T.C., Lee, Y.L., Kuo, Y.T., Tsai, W.C., Hsiao, Y.Y., Chen, Y.W., Wu, W.L. and Chen, H.H. (2011) An overview of the Phalaenopsis orchid genome through BAC end sequence analysis. BMC Plant Biol 11: 3.

    Immink, R.G.H., Gadella, T.W.J., Ferrario, S., Busscher, M. and Angenent, G.C. (2002) Analysis of MADS box protein-protein interactions in living plant cells. P Natl Acad Sci USA 99: 2416-2421.

    Israel, H.W. and Sagawa, Y. (1965) Post-pollination ovule development in Dendrobium Orchids .3. Fine Structure of Meiotic Prophase 1. Caryologia 18: 15-&.

    Kaufmann, K., Melzer, R. and Theissen, G. (2005) MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene 347: 183-198.

    Kramer, E.M., Jaramillo, M.A. and Di Stilio, V.S. (2004) Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms. Genetics 166: 1011-1023.

    Laughlin, R. (1958) Desiccation of eggs of the crane fly (Tipula oleracea, L.). Nature 182: 613.

    Lopez-Dee, Z.P., Wittich, P., Pe, M.E., Rigola, D., Del Buono, I., Gorla, M.S., Kater, M.M. and Colombo, L. (1999) OsMADS13, a novel rice MADS-box gene expressed during ovule development. Dev Genet 25: 237-244.

    Martinez-Trujillo, M., Limones-Briones, V., Cabrera-Ponce, J.L. and Herrera-Estrella, L. (2004) Improving transformation efficiency of Arabidopsis thaliana by modifying the floral dip method. Plant Mol Biol Rep 22: 63-70.

    Miller, J.H. (1992) A short course in bacterial genetics : a laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Laboratory Press, Plainview, N.Y.

    Munster, T., Pahnke, J., Di Rosa, A., Kim, J.T., Martin, W., Saedler, H. and Theissen, G. (1997) Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. Proc Natl Acad Sci U S A 94: 2415-2420.

    Nadeau, J.A., Zhang, X.S., Nair, H. and O'Neill, S.D. (1993) Temporal and spatial regulation of 1-aminocyclopropane-1-carboxylate oxidase in the pollination-induced senescence of orchid flowers. Plant Physiol 103: 31-39.

    Nadeau, J.A., Zhang, X.S., Li, J. and ONeill, S.D. (1996) Ovule development: Identification of stage-specific and tissue-specific cDNAs. Plant Cell 8: 213-239.

    Parenicova, L., de Folter, S., Kieffer, M., Horner, D.S., Favalli, C., et al. (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15: 1538-1551.

    Peakall, R. (2007) Speciation in the Orchidaceae: confronting the challenges. Mol Ecol 16: 2834-2837.

    Pinyopich, A., Ditta, G.S., Savidge, B., Liljegren, S.J., Baumann, E., Wisman, E. and Yanofsky, M.F. (2003) Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424: 85-88.

    Purugganan, M.D., Rounsley, S.D., Schmidt, R.J. and Yanofsky, M.F. (1995) Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. Genetics 140: 345-356.

    Ramirez, S.R., Gravendeel, B., Singer, R.B., Marshall, C.R. and Pierce, N.E. (2007) Dating the origin of the Orchidaceae from a fossil orchid with its pollinator. Nature 448: 1042-1045.

    Rounsley, S.D., Ditta, G.S. and Yanofsky, M.F. (1995) Diverse Roles for MADS Box Genes in Arabidopsis Development. Plant Cell 7: 1259-1269.

    Rudall, P.J. and Bateman, R.M. (2002) Roles of synorganisation, zygomorphy and heterotopy in floral evolution: the gynostemium and labellum of orchids and other lilioid monocots. Biol Rev Camb Philos Soc 77: 403-441.

    Skipper, M., Johansen, L.B., Pedersen, K.B., Frederiksen, S. and Johansen, B.B. (2006) Cloning and transcription analysis of an AGAMOUS- and SEEDSTICK ortholog in the orchid Dendrobium thyrsiflorum (Reichb. f.). Gene 366: 266-274.

    Song, I.J., Nakamura, T., Fukuda, T., Yokoyama, J., Ito, T., Ichikawa, H., Horikawa, Y., Kameya, T. and Kanno, A. (2006) Spatiotemporal expression of duplicate AGAMOUS orthologues during floral development in Phalaenopsis. Dev Genes Evol 216: 301-313.

    Sood, S.K. and Mohana, P.R. (1986) Development of male and female gametophytes in Herminium angustifolium (Orchidaceae), Phytomorphology 36: 11–15.

    Theissen, G. (2005) Birth, life and death of developmental control genes: new challenges for the homology concept. Theory Biosci 124: 199-212.

    Theissen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J.T., Munster, T., Winter, K.U. and Saedler, H. (2000) A short history of MADS-box genes in plants. Plant Mol Biol 42: 115-149.

    Theissen, G. and Saedler, H. (2001) Plant biology. Floral quartets. Nature 409: 469-471.

    Tohda, H. (1967) An embryological study of Hetaeria shikokiana, a saprophytic orchid in Japan. Sci. Rep. Tohoku Univ. Ser. IV (Biol.) 33: 83–95.

    Tsai, W.C., Kuoh, C.S., Chuang, M.H., Chen, W.H. and Chen, H.H. (2004) Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid. Plant Cell Physiol 45: 831-844.

    Tsai, W.C., Lee, P.F., Chen, H.I., Hsiao, Y.Y., Wei, W.J., Pan, Z.J., Chuang, M.H., Kuoh, C.S., Chen, W.H. and Chen, H.H. (2005) PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development. Plant Cell Physiol 46: 1125-1139.

    Tsai, W.C., Pan, Z.J., Hsiao, Y.Y., Jeng, M.F., Wu, T.F., Chen, W.H. and Chen, H.H. (2008) Interactions of B-class complex proteins involved in tepal development in Phalaenopsis orchid. Plant Cell Physiol 49: 814-824.

    Tsai, W.C., Hsiao, Y.Y., Pan, Z.J., Kuoh, C.S., Chen, W.H. and Chen, H.H. (2008) The role of ethylene in orchid ovule development. Plant Sci 175: 98-105.

    Tsai, W.C., Hsiao, Y.Y., Pan, Z.J., Hsu, C.C., Yang, Y.P., Chen, W.H. and Chen, H.H. (2008) Molecular biology of orchid flowers: With emphasis on Phalaenopsis. Adv Bot Res 47: 99-145.

    Weigel, D. and Meyerowitz, E.M. (1994) The ABCs of floral homeotic genes. Cell 78: 203-209.

    Yasugi, S. (1983) Ovule and Embryo Development in Doritis-pulcherrima (Orchidaceae). Am J Bot 70: 555-560.

    Yeung, E.C. and Law, S.K. (1989) Embryology of Epidendrum-ibaguense .1. Ovule Development. Can J Bot 67: 2219-2226.

    Yu, H. and Goh, C.J. (2001) Molecular genetics of reproductive biology in orchids. Plant Physiol 127: 1390-1393.

    Yun, P.Y., Ito, T., Kim, S.Y., Kanno, A. and Kameya, T. (2004) The AVAG1 gene is involved in development of reproductive organs in the ornamental asparagus, Asparagus virgatus. Sex Plant Reprod 17: 1-8.

    Zahn, L.M., Leebens-Mack, J., DePamphilis, C.W., Ma, H. and Theissen, G. (2005) To B or Not to B a flower: the role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms. J Hered 96: 225-240.

    Zhang, X.S. and Oneill, S.D. (1993) Ovary and gametophyte development are coordinately regulated by auxin and ethylene following pollination. Plant Cell 5: 403-418.

    下載圖示 校內:2021-12-31公開
    校外:2021-12-31公開
    QR CODE