| 研究生: |
謝宜宸 Hsieh, Yi-Chen |
|---|---|
| 論文名稱: |
AIGC與團隊創造力的共生策略 The Symbiotic Strategy Between AIGC and Teamwork Creativity |
| 指導教授: |
周學雯
Chow, Hsueh-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 體育健康與休閒研究所 Institute of Physical Education, Health & Leisure Studies |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 人工智慧生成內容 (AIGC) 、創造性成就 、資訊繭效應 、人機協作 |
| 外文關鍵詞: | Artificial Intelligence Generated Content (AIGC), Creative achievement, Information Cocoon effect, Human-AI collaboration |
| 相關次數: | 點閱:4 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人工智慧產出內容 (Artificial Intelligence Generated Content, AIGC) 的快速發展為內容創作與產業應用帶來深遠影響,但同時也引發了對創造力、內容真實性及資訊繭效應等挑戰。本研究基於科技—組織—環境 (Technology-Organization-Environment, TOE) 模型,旨在探討AIGC使用頻率對人機協作程度與創造性成就的影響,並檢視資訊繭效應在此關係中的調節效果。
本研究採問卷調查法。為確保量表品質,研究工具經前導研究 (pilot study) 進行預試與修訂,確認具備良好信效度後,再針對198位具備AIGC使用經驗的用戶進行正式調查。研究變項包含AIGC使用頻率、人機協作程度、創造性成就及資訊繭效應,並採用偏最小平方法結構方程模型 (Partial Least Squares Structural Equation Modeling, PLS-SEM) 進行路徑分析與假設驗證。
實證結果顯示:(1) AIGC使用頻率顯著正向影響人機協作程度與創造性成就;(2) 人機協作程度對創造性成就有顯著正向影響;(3) 資訊繭效應的調節效果未達顯著水準。此外,研究亦發現使用者情境存在差異,上班族傾向將AIGC視為協作夥伴,而研究生則視其為輔助工具。
本研究證實AIGC在提升協作與創造力上的潛力,並為後續研究建構了可靠的測量量表。研究結果建議,未來AIGC的發展應考量使用者情境,提個性化服務,為組織與個人在AIGC時代的發展提供實證參考。
This study examines the impact of Artificial Intelligence Generated Content (AIGC) on human–machine collaboration and creative achievement within the Technology–Organization–Environment (TOE) framework. A survey of 198 AIGC content creators was analyzed using SPSS and PLS-SEM to test the proposed hypotheses. Results indicate that AIGC usage frequency is positively associated with both human–machine collaboration and creative achievement, and that collaboration significantly enhances creative outcomes. However, the information cocoon effect did not significantly moderate the relationship between AIGC usage and creative achievement. These findings highlight AIGC’s potential to foster collaborative dynamics and improve creative performance, while suggesting that user perceptions—such as viewing AIGC as a partner in workplace settings versus a tool in academic contexts—may influence adoption and outcomes. This study contributes empirical evidence on AIGC’s role in creativity and validates related measurement scales, offering a robust basis for future research.
支琬清。(2025年3月11日)。該走進諮商診所,還是直接問ChatGPT?研究揭AI比人類心理師更受歡迎,專家這樣看。經理人。https://www.managertoday.com.tw/articles/view/70055
哈佛商業評論全球繁體中文版編輯部。(2024年3月)。做對五件事,讓生成式AI解放團隊創造力。哈佛商業評論 (繁體中文版)。https://www.hbrtaiwan.com/article/22833/dont-let-gen-ai-limit-your-teams-creativity
張玉琦。(2021年4月7日)。2025的關鍵技能:批判性思考!批判思維和一般思維,哪裡不一樣?經理人。https://www.managertoday.com.tw/articles/view/62710
瓦基。(2022年12月17日)。《窮查理的普通常識》終身受用的五個重點和讀書心得。閱讀前哨站。https://readingoutpost.com/poor-charlie/
永析統計諮詢顧問。(2024年1月17日)。Spearman等級相關性分析 (Spearman Rank Correlation Analysis) 。永析統計諮詢顧問網站。https://www.yongxi-stat.com/spearman-rank-correlation-analysis-r/
邵蓓宣。(2024年5月14日)。與其擔心被AI取代,不如擁抱學習力與成長心態。經理人。https://www.managertoday.com.tw/articles/view/66931
Althuizen, N., & Reichel, A. (2016). The Effects of IT-Enabled Cognitive Stimulation Tools on Creative Problem Solving: A Dual Pathway to Creativity. Journal of Management Information Systems, 33(1), 11–44. https://doi.org/10.1080/07421222.2016.1172439
Basole, R. C., & Major, T. (2024). Generative AI for Visualization: Opportunities and Challenges. IEEE Computer Graphics and Applications, 44(2), 55–64. https://doi.org/10.1109/MCG.2024.3362168
Chong, L., Zhang, G., Goucher-Lambert, K., Kotovsky, K., & Cagan, J. (2022). Human confidence in artificial intelligence and in themselves: The evolution and impact of confidence on adoption of AI advice. Computers in Human Behavior, 127, 107018. https://doi.org/10.1016/j.chb.2021.107018
Cuzzolin, F., Morelli, A., Cirstea, B., & Sahakian, B. J. (2020). Knowing me, knowing you: theory of mind in AI. Psychological Medicine, 50(7), 1057–1061. https://doi.org/10.1017/S0033291720000835
Endsley, M. R. (2023). Supporting human-AI teams: Transparency, explainability, and situation awareness. Computers in Human Behavior, 140, 107694. https://doi.org/10.1016/j.chb.2022.107694
Georganta, E., & Ulfert, A. S. (2024). My colleague is an AI! Trust differences between AI and human teammates. Team Performance Management: An International Journal, 30(1/2), 23–37.https://doi.org/10.1108/tpm-07-2023-0053
Gu, M., Zhao, T., Yang, L., Wu, X., & Chen, W. (2024). Modeling Information Cocoons in Networked Populations: Insights From Backgrounds and Preferences. IEEE Transactions on Computational Social Systems, 11(3), 4497–4510. https://doi.org/10.1109/tcss.2024.3354508
Hair, J. F., Gabriel, M. L. D. S., da Silva, D., & Braga Junior, S. (2019). Development and validation of attitudes measurement scales: fundamental and practical aspects. RAUSP Management Journal, 54(4), 490–507.https://doi.org/10.1108/rausp-05-2019-0098
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate Data Analysis (8th ed.). Cengage Learning. https://reurl.cc/YY5Kal
Hertzog, M. A. (2008). Considerations in determining sample size for pilot studies. Research in Nursing & Health, 31(2), 180–191. https://doi.org/10.1002/nur.20247
Islam, T., Miron, A., Liu, X., & Li, Y. (2022). SVTON: Simplified virtual try-on. In 2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA) (pp. 1–6). IEEE. https://doi.org/10.1109/ICMLA55696.2022.00059
Islam, T., Miron, A., Nandy, M., Choudrie, J., Liu, X., & Li, Y. (2024). Transforming Digital Marketing with Generative AI. Computers, 13(7), 168. https://doi.org/10.3390/computers13070168
Karinshak, E., & Jin, Y. (2023). AI-driven disinformation: a framework for organizational preparation and response. Journal of Communication Management, 27(4), 539–562. https://doi.org/10.1108/jcom-09-2022-0113
Lou, Y. (2023). Human creativity in the AIGC era. She Ji: The Journal of Design, Economics, and Innovation, 9(4), 541-552.https://doi.org/10.1016/j.sheji.2024.02.002
Lee, H.-K. (2022). Rethinking creativity: creative industries, AI and everyday creativity. Media, Culture & Society, 44(3), 601–612. https://doi.org/10.1177/01634437221077009
Lei, H., Leaungkhamma, L., & Le, P. B. (2020). How transformational leadership facilitates innovation capability: the mediating role of employees' psychological capital. Leadership & Organization Development Journal, 41(4), 481–499. https://doi.org/10.1108/lodj-06-2019-0245
Lin, H., Jiang, X., Deng, X., Bian, Z., Fang, C., & Zhu, Y. (2024). Comparing AIGC and traditional idea generation methods: Evaluating their impact on creativity in the product design ideation phase. Thinking Skills and Creativity, 54, 101649. https://doi.org/10.1016/j.tsc.2024.101649
Lin, Y., Gao, Z., Du, H., Niyato, D., Kang, J., Xiong, Z., & Zheng, Z. (2024). Blockchain-based efficient and trustworthy AIGC services in Metaverse. IEEE Transactions on Services Computing, 17(5), 2067–2081. https://doi.org/10.1109/TSC.2024.3382958
Magni, F., Park, J., & Chao, M. M. (2023). Humans as Creativity Gatekeepers: Are We Biased Against AI Creativity? Journal of Business and Psychology, 39(3), 643–656. https://doi.org/10.1007/s10869-023-09910-x
Mallick, R., Flathmann, C., Lancaster, C., Hauptman, A., McNeese, N., & Freeman, G. (2023). The pursuit of happiness: the power and influence of AI teammate emotion in human-AI teamwork. Behaviour & Information Technology, 43(14), 3436–3460. https://doi.org/10.1080/0144929x.2023.2277909
McNeese, N. J., Schelble, B. G., Canonico, L. B., & Demir, M. (2021). Who/What Is My Teammate? Team Composition Considerations in Human–AI Teaming. IEEE Transactions on Human-Machine Systems, 51(4), 288–299. https://doi.org/10.1109/thms.2021.3086018
Naser, M. Y. M., & Bhattacharya, S. (2023). Empowering human-AI teams via Intentional Behavioral Synchrony. Frontiers in Neuroergonomics, 4, 1181827. https://doi.org/10.3389/fnrgo.2023.1181827
Ozili, P. K. (2022). The acceptable R-square in empirical modelling for social science research.Social Research Methodology and Publishing Results. https://doi.org/10.2139/ssrn.4128165
Royston, R., & Reiter‐Palmon, R. (2017). Creative self‐efficacy as mediator between creative mindsets and creative problem‐solving. The Journal of Creative Behavior, 53(4), 472–481. https://doi.org/10.1002/jocb.226
Sarstedt, M., Ringle, C. M., & Hair, J. F. (2022). Partial Least Squares Structural Equation Modeling. In Handbook of Market Research (pp. 587–632). https://doi.org/10.1007/978-3-319-57413-4_15
Schmutz, J. B., Outland, N., Kerstan, S., Georganta, E., & Ulfert, A. S. (2024). AI-teaming: Redefining collaboration in the digital era. Current Opinion in Psychology, 58, 101837. https://doi.org/10.1016/j.copsyc.2024.101837
Tao, W., Gao, S., & Yuan, Y. (2023). Boundary crossing: an experimental study of individual perceptions toward AIGC. Frontiers in Psychology, 14, 1185880. https://doi.org/10.3389/fpsyg.2023.1185880
Ulnicane, I. (2025). Governance fix? Power and politics in controversies about governing generative AI. Policy and Society, 44(1), 70–84. https://doi.org/10.1093/polsoc/puae022
Xiong, Z., Xia, H., Ni, J., & Hu, H. (2025). Basic assumptions, core connotations, and path methods of model modification—using confirmatory factor analysis as an example. Frontiers in Education, 10, 1506415. https://doi.org/10.3389/feduc.2025.1506415
Zhang, R., Flathmann, C., Musick, G., Schelble, B., McNeese, N. J., Knijnenburg, B., & Duan, W. (2024). I Know This Looks Bad, But I Can Explain: Understanding When AI Should Explain Actions In Human-AI Teams. ACM Transactions on Interactive Intelligent Systems, 14(1), 1–23. https://doi.org/10.1145/3635474
Zhang, Y., & Li, Y. (2025). Enhancing innovation capabilities, digital management, and corporate competitiveness. Finance Research Letters, 73, 106595. https://doi.org/10.1016/j.frl.2024.106595
Zhao, M., Simmons, R., & Admoni, H. (2025). The Role of Adaptation in Collective Human-AI teaming. Topics in Cognitive Science, 17(2), 291–323. https://doi.org/10.1111/tops.12633
校內:2026-02-07公開