| 研究生: |
陳柳豪 Chen, Liou-Hao |
|---|---|
| 論文名稱: |
水文現象與環境參數影響eDNA偵測技術之探討 Analysis of Environmental Parameters and Hydrological Influence on eDNA Tracking Technology |
| 指導教授: |
孫建平
Suen, Jian-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 環境DNA 、小盾鱧 、物種監測 、水生生態系統 、水文現象 |
| 外文關鍵詞: | eDNA, Channa micropeltes, species detection, aquatic ecosystem, hydrological influence |
| 相關次數: | 點閱:146 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,雖然已經可以利用eDNA偵測法以得知水生生物的存在與否,且進一步量化其eDNA濃度,並且結合生物量(Biomass)資訊能夠估計族群豐度及密度。但精確的估計物種分佈受到複雜的環境變異所影響,特別是水生生態系統,受到流量及流速而有eDNA擴散和稀釋等問題,因此現階段於eDNA濃度精確估計上仍有許多待釐清的問題要解決。
為了更能夠了解水文特性與環境參數對於eDNA濃度變化的影響,本研究利用eDNA法以得知外來入侵種─小盾鱧之eDNA濃度。於曾文水庫進行兩次不同水文條件之採樣,採集表層、水深10m與水深20m之水樣以探討小盾鱧eDNA垂直濃度變化之情形;另外在南化水庫採集表層水以了解小盾鱧於南化水庫之eDNA濃度分佈;亦在南化水庫下游之後堀溪採集水樣以探討小盾鱧入侵溪流之情況。並且量測環境因子以得知環境變異對於eDNA濃度的影響。希望以不同的面向與觀點,將eDNA視為溶質進而探討其分佈。
從eDNA濃度分佈結果得知,曾文水庫於6日無降雨的條件下,以水深10m之eDNA濃度為最高,次之為水深20m之eDNA濃度,表層水為最低;而降雨後之eDNA濃度分佈呈現均一化且eDNA濃度明顯降低之情形。南化水庫之小盾鱧eDNA濃度分佈以水庫中游為最高,水庫上游靠近溪流出水口處為最低,甚至沒有偵測到小盾鱧eDNA濃度。後堀溪eDNA濃度分佈之情形多集中於後堀溪下游靠近曾文溪匯流口之點位,其中北寮橋不僅有偵測到小盾鱧eDNA,亦有文獻資料證明在此樣點捕捉到。透過Mann-Whitney U檢定、獨立樣本T檢定以及主成分分析的結果得知影響曾文水庫之環境因子為濁度、導電度、硝酸鹽與葉綠素a;影響南化水庫之環境因子則是溶氧、導電度、濁度與葉綠素a;後堀溪則沒有發現環境因子有其顯著性差異。結果顯示曾文水庫受到許多支流流入之逕流影響嚴重,造成環境因子的分佈情形與南化水庫大不相同,亦間接影響小盾鱧eDNA濃度分佈。說明了環境影響對於eDNA濃度在精確估計上的重要性。
本研究的結果顯示降雨造成的地表逕流會使水庫水體混合,使得eDNA濃度受到擾動而有均一化且變少的現象。另一方面,當水體受到擾動時,eDNA會受到外力作用影響,使較大的eDNA裂解且變小,因而增加eDNA受到溫度、UV-B與微生物等影響之表面積,加速eDNA在水中的降解以及移除率。綜合上述,本研究建議採樣時間於連續7日無降雨後,採樣得到的eDNA濃度與分佈較精確。
In order to understand environmental parameters and hydrological influence on eDNA concentration, this study conducted eDNA technology to investigate Channa micropeltes, an invasive species, eDNA concentration. Our study areas include TsengWen Reservoir, NanHua Reservoir and HouJue River. We sampled Channa micropeltes eDNA concentration in all study areas besides TsengWen Reservoir where we investigated different water depth based on two different hydrological conditions. We discovered eDNA concentration in TsengWen Reservoir demonstrated the higest value in 10 m water depth, and lowest value in surface water. The eDNA concentration decreased and distribution was uniformed after rainfall caused runoff disturbing water in the reservoir. In addition, the eDNA concentration distributed higher value at middle section in NanHua Reservoir and downstream of HouJue River.
1. Andersen, K., Bird, K. L., Rasmussen, M., Haile, J., BREUNING‐MADSEN, H. E. N. R. I. K., Kjaer, K. H., ... & Willerslev, E.. Meta‐barcoding of ‘dirt’DNA from soil reflects vertebrate biodiversity. Molecular Ecology, 21(8), 1966-1979. (2012).
2. Amos, W., Whitehead, H., Ferrari, M. J., Glockner‐Ferrari, D. A., Payne, R., & Gordon, J.. Restrictable DNA from sloughed cetacean skin;its potential for use in population analysis. Marine Mammal Science, 8(3), 275-283. (1992).
3. Barnes, M. A., Turner, C. R., Jerde, C. L., Renshaw, M. A., Chadderton, W. L., & Lodge, D. M.. Environmental conditions influence eDNA persistence in aquatic systems. Environmental science & technology, 48(3), 1819-1827. (2014).
4. Begon, M., Townsend, C. R., & Harper, J. L.. Ecology: from individuals to ecosystems. (2006).
5. Crooks, J. A., & Soulé, M. E.. Lag times in population explosions of invasive species: causes and implications. Invasive species and biodiversity management, 103-125. (1999).
6. Dalén, L., Götherström, A., Meijer, T., & Shapiro, B.. Recovery of DNA from footprints in the snow. The Canadian Field-Naturalist, 121(3), 321-324. (2007).
7. Deiner, K., & Altermatt, F.. Transport distance of invertebrate environmental DNA in a natural river. PLoS One, 9(2), e88786. (2014).
8. Dejean, T., Valentini, A., Miquel, C., Taberlet, P., Bellemain, E., & Miaud, C.. Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus.Journal of Applied Ecology, 49(4), 953-959. (2012).
9. Doi, H., Uchii, K., Takahara, T., Matsuhashi, S., Yamanaka, H., & Minamoto, T.. Use of droplet digital PCR for estimation of fish abundance and biomass in environmental DNA surveys. PloS one, 10(3), e0122763. (2015).
10. Díaz-Ferguson, E. E., & Moyer, G. R.. History, applications, methodological issues and perspectives for the use environmental DNA (eDNA) in marine and freshwater environments. Revista de Biología Tropical, 62(4), 1273-1284. (2014).
11. Enzoklop 2014 Polymerase chain reaction – PCR https://upload.wikimedia.org/wikipedia/commons/9/96/Polymerase_chain_reaction.svg
12. Eichmiller, J. J., Bajer, P. G., & Sorensen, P. W. The relationship between the distribution of common carp and their environmental DNA in a small lake. PloS one, 9(11), e112611. (2014).
13. Folloni, S., KAGKLI, D., Rajcevic, B., Guimaraes, N. C., Van Droogenbroeck, B., Valicente, F. H., ... & Van den Bulcke, M.. Detection of airborne genetically modified maize pollen by real‐time PCR. Molecular ecology resources, 12(5), 810-821. (2012).
14. Foote, A. D., Thomsen, P. F., Sveegaard, S., Wahlberg, M., Kielgast, J., Kyhn, L. A., ... & Gilbert, M. T. P.. Investigating the potential use of environmental DNA (eDNA) for genetic monitoring of marine mammals. PloS one, 7(8), e41781. (2012).
15. Fu, X. H., Wang, L., Le, Y. Q., & Hu, J. J.. Persistence and renaturation efficiency of thermally treated waste recombinant DNA in defined aquatic microcosms. Journal of Environmental Science and Health, Part A, 47(13), 1975-1983. (2012).
16. Fukumoto, S., Ushimaru, A., & Minamoto, T.. A basin‐scale application of environmental DNA assessment for rare endemic species and closely related exotic species in rivers: a case study of giant salamanders in Japan. Journal of Applied Ecology, 52(2), 358-365. (2015).
17. Goldberg, C. S., Sepulveda, A., Ray, A., Baumgardt, J., & Waits, L. P.. Environmental DNA as a new method for early detection of New Zealand mudsnails (Potamopyrgus antipodarum). Freshwater Science, 32(3), 792-800. (2013).
18. Häder, D. P., Kumar, H. D., Smith, R. C., & Worrest, R. C.. Aquatic ecosystems: effects of solar ultraviolet radiation and interactions with other climatic change factors. Photochemical & Photobiological Sciences, 2(1), 39-50. (2003).
19. Hofreiter, M., Serre, D., Poinar, H. N., Kuch, M., & Pääbo, S.. Ancient DNA. Nature Reviews Genetics, 2(5), 353-359. (2001).
20. Howald, G., Donlan, C., Galván, J. P., Russell, J. C., Parkes, J., Samaniego, A., ... & Saunders, A.. Invasive rodent eradication on islands.Conservation biology, 21(5), 1258-1268. (2007).
21. Ivanova, N. V., Zemlak, T. S., Hanner, R. H., & Hebert, P. D.. Universal primer cocktails for fish DNA barcoding. Molecular Ecology Notes, 7(4), 544-548. (2007).
22. Jane, S. F., Wilcox, T. M., McKelvey, K. S., Young, M. K., Schwartz, M. K., Lowe, W. H., ... & Whiteley, A. R.. Distance, flow and PCR inhibition: eDNA dynamics in two headwater streams. Molecular ecology resources,15(1), 216-227. (2015).
23. Jerde, C. L., Mahon, A. R., Chadderton, W. L., & Lodge, D. M.. “Sight‐unseen” detection of rare aquatic species using environmental DNA.Conservation Letters, 4(2), 150-157. (2011).
24. Keskin, E.. Detection of invasive freshwater fish species using environmental DNA survey. Biochemical Systematics and Ecology, 56, 68-74. (2014).
25. Klymus, K. E., Richter, C. A., Chapman, D. C., & Paukert, C.. Quantification of eDNA shedding rates from invasive bighead carp Hypophthalmichthys nobilis and silver carp Hypophthalmichthys molitrix.Biological Conservation, 183, 77-84. (2015).
26. Kottelat, M., Kartikasari, S.R., Whitten, A.J., Kartikasari, S.N., Wirjoatmodjo, S. Freshwater fishes of western Indonesia and Sulawesi: Indonesia, Periplus Edition(HK). Ltd. 221., pp,84. (1993).
27. Laramie, M. B., Pilliod, D. S., & Goldberg, C. S.. Characterizing the distribution of an endangered salmonid using environmental DNA analysis.Biological Conservation, 183, 29-37. (2015).
28. Lee, P.G., Ng, P.K.L. The snakehead fishes fo the Indo-Malayan Region. Nature Malaysiana, 16, 4,113-129. (1991).
29. Lindahl, T. Instability and decay of the primary structure of DNA.nature,362(6422), 709-715. (1993).
30. Ogram, A., Sayler, G. S., & Barkay, T.. The extraction and purification of microbial DNA from sediments. Journal of microbiological methods, (2), 57-66. (1987).
31. Pilliod, D. S., Goldberg, C. S., Arkle, R. S., & Waits, L. P.. Factors influencing detection of eDNA from a stream‐dwelling amphibian. Molecular Ecology Resources, 14(1), 109-116. (2014).
32. Ravanat, J. L., Douki, T., & Cadet, J.. Direct and indirect effects of UV radiation on DNA and its components. Journal of Photochemistry and Photobiology B: Biology, 63(1), 88-102. (2001).
33. Sakai, A. K., Allendorf, F. W., Holt, J. S., Lodge, D. M., Molofsky, J., With, K. A., ... & McCauley, D. E.. The population biology of invasive specie.Annual Review of Ecology and Systematics, 305-332. (2001).
34. Schnell, I. B., Thomsen, P. F., Wilkinson, N., Rasmussen, M., Jensen, L. R., Willerslev, E., ... & Gilbert, M. T. P.. Screening mammal biodiversity using DNA from leeches. Current biology, 22(8), R262-R263. (2012).
35. Strickler, K. M., Fremier, A. K., & Goldberg, C. S.. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms.Biological Conservation, 183, 85-92. (2015).
36. Takahara, T., Minamoto, T., & Doi, H.. Effects of sample processing on the detection rate of environmental DNA from the Common Carp (Cyprinus carpio). Biological Conservation, 183, 64-69. (2015).
37. Thomsen, P., Kielgast, J. O. S., Iversen, L. L., Wiuf, C., Rasmussen, M., Gilbert, M. T. P., ... & Willerslev, E.. Monitoring endangered freshwater biodiversity using environmental DNA. Molecular ecology, 21(11), 2565-2573. (2012a).
38. Thomsen, P. F., Kielgast, J., Iversen, L. L., Møller, P. R., Rasmussen, M., & Willerslev, E.. Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS one, 7(8), e41732. (2012b).
39. Vitousek, P. M., D'antonio, C. M., Loope, L. L., Rejmanek, M., & Westbrooks, R.. Introduced species: a significant component of human-caused global change. New Zealand Journal of Ecology, 1-16. (1997).
40. Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R., & Hebert, P. D.. DNA barcoding Australia's fish species. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 360(1462), 1847-1857. (2005).
41. Willerslev, E., Cappellini, E., Boomsma, W., Nielsen, R., Hebsgaard, M. B., Brand, T. B., ... & Johnsen, S. Ancient biomolecules from deep ice cores reveal a forested southern Greenland.Science,317(5834), 111-114. (2007).
42. Yamamoto, S., Minami, K., Fukaya, K., Takahashi, K., Sawada, H., Murakami, H., ... & Hongo, M.. Environmental DNA as a ‘Snapshot’of fish distribution: a case study of Japanese Jack Mackerel in Maizuru Bay, Sea of Japan. PloS one, 11(3), e0149786. (2016).
43. Yamanaka, H., & Minamoto, T.. The use of environmental DNA of fishes as an efficient method of determining habitat connectivity. Ecological Indicators, 62, 147-153. (2016).
44. 周銘泰、高瑞卿,「台灣淡水及河口魚圖鑑」,晨星出版有限公司,初版,第362頁,(2011)。
45. 侯晨昕,「建立一環境DNA偵測技術用於調查小盾鱧與環境參數之關係─以曾文水庫為例」,國立成功大學碩士論文,(2015)。
46. 張建元、蔡昕皓,「肆虐於曾文水庫的外來殺手」,自然保育季刊,第四十七期,第62-68頁,(2004)。
47. 郭韋成,「南化與曾文水庫藻類生長之限制因子探討」,國立台南大學碩士論文,(2010)。
48. 梁雲芳,「外來種可能是生態怪客」,科學發展,第三百八十二期,第62-67頁,(2004)。
49. 顏仁德,「2000生物多樣性保育展望大會議論文集-外來種與放生問題」,中華民國自然生態保育協會(SWAN),第摘5頁,(2000)。
50. 台灣自來水公司第六區管理處,「南化水庫防洪防淤工程可行性調查規劃設計總報告」,台灣自來水公司第六區管理處,(2013)。
51. 經濟部水利署水利規劃試驗所,「曾文溪河系河川情勢調查總報告」,經濟部水利署水利規劃試驗所,(2006)。
52. 經濟部水利署南區水資源局,「南化水庫防淤隧道工程計畫–基本設計檢討及施工監造」,經濟部水利署南區水資源局,(2013)。
53. 經濟部水利署第六河川局,「曾文水庫放淤對曾文溪下游河道及海岸監測影響方析」,經濟部水利署第六河川局,(2016)。