簡易檢索 / 詳目顯示

研究生: 黃柏瑋
Huang, Bo-Wei
論文名稱: 運用深度學習與生成對抗網路建置人臉口罩辨識模型
Using Deep Learning and Generative Adversarial Network to Construct the Face Mask Recognition Model
指導教授: 陳牧言
Chen, Mu-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系碩士在職專班
Department of Engineering Science (on the job class)
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 54
中文關鍵詞: YOLOv4 口罩偵測SinGANConSinGAN資料擴增
外文關鍵詞: YOLOv4, Mask Detection, SinGAN, ConSinGAN, Data Augmentation
相關次數: 點閱:201下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 從 2019 年 12 月起因新型冠狀病毒所造成的疾病 COVID-19 (Coronavirus disease 2019)爆發以來,截止到目前 2022 年 6 月,台灣已累計確診 319 萬個病例數。雖然當前台灣的人口疫苗覆蓋率第一劑達九成,第兩劑有八成二,第三劑也有六成九,有相對的基礎保護力。但為了避免本土疫情持續升溫,目前政府的防疫政策除例外情形時免戴口罩,外出仍應全程佩戴口罩,相關規定持續至 2022 年 6 月底。因應疫情下的防疫措施,本論文設計了一套人臉口罩辨識模型,可用來辨別是否有佩戴口罩以及是否有佩戴好口罩。
    本論文運用了深度學習網路,採用了物件偵測模型為 YOLO(You Only Look Once)v4,相對於歷代的 YOLO 版本不僅提升了檢測速度,且精準度也大幅改善,再搭配生成對抗網路模型來做資料擴增,豐富了訓練的資料集項目,來提升辨識的準確度。採用生成對抗網路模型的資料集對比沒有經過處理的資料集平均預測率可提升 5%,達到 94.52%,召回率為 93%,F1-Score 為 91%。

    The COVID-19 (Coronavirus disease 2019) pandemic broke out in December 2019. Until now, in June 2022, there are in total of 3.19 million confirmed cases in Taiwan. The current rate of vaccination of the Taiwanese population seems adequate to provide basic immune protection against the virus. 90% of Taiwanese people had their first COVID-19 vaccine, 82% of which got the second vaccination and 69% of the population completed their booster dose. However, to prevent the pandemic from getting worse, except few special situations, all individuals should wear masks while going outdoor due to government policies, several related regulations will remain until the end of June. To cope with the mask regulations, this study designed a facial mask recognition model, the model can be used to examine whether an individual wears a mask and if a mask is worn properly by one.
    This design applied Deep Learning Network and selected YOLO (You Only Look Once) v4 as the object detection model. This version of YOLO, compared to the past few versions of it, not only speeds up the detection but also significantly enhanced its accuracy. Working with the Generative Adversarial Network for Data Augmentation, the database for detection was enriched and hence reached a greater level of accuracy. The average prediction rate of data collections can go up to 94.52%, 5%more than the rate not applied with Generative Adversarial Network, with the recall rate of 93% and F1-score of 91%.

    摘要 I Extended Abstract II 誌謝 V 內文目錄 VI 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1研究背景 1 1.2 研究動機 3 1.3 研究目的 3 1.4 章節提要 5 第二章 文獻探討 7 2.1 人工智慧(Artificial Intelligence, AI) 7 2.1.1機器學習(Machine Learning, ML) 8 2.1.2深度學習(Deep Learning, DL) 8 2.2 卷積神經網路(Convolutional Neural Network, CNN) 10 2.2.1卷積層(Convolution Layer) 11 2.2.2池化層(Pooling Layer) 12 2.2.3全連接層(Fully Connected Layer) 13 2.3 物件偵測(object detection) 14 2.3.1 RCNN 15 2.3.2 YOLO 16 2.4 YOLOv4 20 2.5人臉偵測 22 2.6 資料擴增(Data Augmentation) 24 第三章 研究方法 25 3.1GAN架構 27 3.1.1 SinGAN(Single Image GAN) 28 3.1.2 ConSinGAN(Concurrently Single Image GAN) 29 3.2 影像資料預處理 30 3.3 YOLOv4參數文件設定 36 3.4 評估指標 37 第四章 系統實作與分析 40 4.1 實驗環境介紹 40 4.2 實驗流程 41 4.3實驗結果 45 4.4 實驗數據分析 49 第五章 結論 50 5.1 結論 50 5.2 未來展望 51 參考文獻 52

    [1] 疾病介紹, (2020, April 27), 衛生福利部疾病管制署
    https://www.cdc.gov.tw/En/Category/Page/vleOMKqwuEbIMgqaTeXG8A
    (Access Date: August 30, 2022)
    [2] Covid-19, (2016, August 21), 衛生福利部疾病管制署. https://sites.google.com/cdc.gov.tw/2019ncov/global
    (Access Date: August 30, 2022)
    [3] Larxel, (2020, Summer 5), Face Mask Detection. Kaggle, https://www.kaggle.com/datasets/andrewmvd/face-mask-detection.
    (Access Date: August 30, 2022)
    [4] I. Goodfellow, J Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville and Y. Bemgio, "Generative Adversarial Networks", 2014, doi:
    https://doi.org/10.48550/arXiv.1406.2661.
    [5] M. Mirza, S.Osindero, "Conditional Generative Adversarial Nets", 2014,
    doi: https://doi.org/10.48550/arXiv.1411.1784.
    [6] A. Radfod, L. Metz, S.Chintala, "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks", doi:
    https://doi.org/10.48550/arXiv.1511.06434.
    [7] T. Shaham, T. Dekel, and T. Michaeli, " SinGAN: Learning a Generative Model from a Single Natural Image", 2019, pp 4570-4572,
    https://openaccess.thecvf.com/content_ICCV_2019/papers/Shaham_SinGAN_Learning_a_Generative_Model_From_a_Single_Natural_Image_ICCV_2019_paper.pdf
    [8] T. Hinz, M. Fisher, O. Wang, S. Wermter, "Improved Techniques for Training Single-Image GANs", 2020 , pp. 2-3, doi:
    https://doi.org/10.48550/arXiv.2003.11512
    [9] M. Childs, (2011, November 1), John McCarthy: Computer scientist known as the father of AI.
    https://www.independent.co.uk/news/obituaries/john-mccarthy-computer-scientist-known-as-the-father-of-ai-6255307.html
    (Access Date: August 30, 2022)
    [10] Y. Liu. (2020, July 19). AI 學習筆記 (I) 機器學習 vs. 深度學習. Medium.
    https://medium.com/mr-lius-murmur/ai-%E5%AD%B8%E7%BF%92%E7%AD%86%E8%A8%98-i-%E6%A9%9F%E5%99%A8%E5%AD%B8%E7%BF%92-vs-%E6%B7%B1%E5%BA%A6%E5%AD%B8%E7%BF%92-98b1ce9123a3
    (Access Date: August 30, 2022)
    [11] R. H. Wurtz, (2013, November 1), David H. Hubel (1926–2013), Science.
    https://www.science.org/doi/10.1126/science.1247113.
    (Access Date: August 30, 2022)
    [12] K. Fukushima, (1980), " Neocognitron : A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position". Biological Cybernetics. 36 (4): 193–202. doi:10.1007/bf00344251. PMID 7370364. S2CID 206775608.
    [13] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to document recognition,” in Proceedings of the IEEE, vol. 86, no. 11, pp. 6-7, Nov 1998, doi: 10.1109/5.726791
    [14] R. Girshick, J. Donahue, T. Darrell, & J. Malik, "Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation", 2014, pp.1, doi:
    https://doi.org/10.48550/arXiv.1311.2524
    [15] R. Girshick. "Fast R-CNN", 2015, pp.2, doi:
    https://doi.org/10.48550/arXiv.1504.08083
    [16] J. Redmon (2015) Joseph Redmon website
    https://pjreddie.com/
    (Access Date: August 30, 2022)
    [17] J. Redmon, S. Divvala, R. Girshick, & A. Farhadi, "You Only Look Once: Unified, Real-Time Object Detection", 2016, pp.1–3, doi:
    https://doi.org/10.48550/arXiv.1506.02640
    [18] J. Redmon, & A. Farhadi, "YOLO9000: Better, Faster, Stronger.", 2016, pp. 4, doi:
    https://doi.org/10.48550/arXiv.1506.02640
    [19] J. Redmon, & A. Farhadi, "YOLOv3:AnIncremental Improvement", 2018, pp.2, doi:
    https://doi.org/10.48550/arXiv.1804.02767
    [20] A. Bochkovskiy, C.Y. Wang, & H. Liao, "YOLOv4: Optimal Speed and Accuracy of Object Detection", 2020, pp.1-2, doi:
    https://doi.org/10.48550/arXiv.2004.10934
    [21] 江伶娸, "結合CGAN與YOLOv4進行芒果等級分類", 朝陽科技大學資訊管理系碩士論文, 2022, pp.22, doi:
    https://hdl.handle.net/11296/phqyup
    [22] P. Wu, (2020, September 7), Object Detection: 初探YOLOV5爭議以及與YOLOV4之比較, Medium,
    https://pedin024.medium.com/%E5%88%9D%E6%8E%A2yolov5-71f13b4ba78d
    (Access Date: August 30, 2022)
    [23] K. Zhang, Z. Zhang, & Z. Li., "Joint Face Detection and Alignment Using Multi-Task Cascaded Convolutional Networks", 2016, pp.1–3, doi:
    https://doi.org/10.1109/LSP.2016.2603342
    [24] J. Solawetz, (2020, May 13), Roboflow
    https://blog.roboflow.com/yolov4-data-augmentation/
    (Access Date: August 30, 2022)
    [25] 李謦伊, (2020, August 6), YOLOv4 訓練教學, Medium.
    https://medium.com/ching-i/yolo-c49f70241aa7
    (Access Date: August 30, 2022)

    無法下載圖示 校內:2027-06-30公開
    校外:2027-06-30公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE