簡易檢索 / 詳目顯示

研究生: 逄澤樺
Pang, Tse-Hua
論文名稱: 應用強化學習於冰水系統最佳運轉模式之研究一以H公司為例
Applying Reinforcement Learning to the Optimal Operation Mode of Chiller System-An Example of Company H
指導教授: 李昇暾
Li, Sheng-Tun
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系碩士在職專班
Department of Industrial and Information Management (on the job class)
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 58
中文關鍵詞: 長短期記憶強化學習冰水主機能源耗損深度神經網路
外文關鍵詞: Long Short-Term Memory, Reinforcement Learning, Chiller, Energy Consumption, Deep Neural Networks
相關次數: 點閱:83下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去幾年來,隨著整體能源消耗的不斷增加,資源的有限性已成為全球面臨的重大挑戰。世界上能耗占比最大的類別為建築物類,其中又以冰水系統的能耗占最大宗。隨著能源消耗的增加,相關的環境汙染和全球溫室氣體的排放量亦隨之上升。因此,制定有效的冰水系統能源管理策略,成為節能減碳戰略中重要的一環。
    本研究首先利用深度學習中的長短期記憶模型 (Long Short-Term Memory,簡稱LSTM ) 來預測未來冰水系統的製冷能力。接著,將預測下一階段的製冷能力與當前製冷能力及室外濕球溫度結合作為強化學習中的環境特徵,進行策略學習,其中行動為調整冰水主機的設定溫度。通過每個時間步長所獲得的獎勵 ( Reward ) ,我們自適應地修正冰水主機設定溫度的權重,以最大化冰水系統的性能係數( COP )。
    採用H公司過去一年廠務冰水系統的運轉資料進行實證分析,結果表明,結合長短期記憶模型 ( LSTM ) 與強化學習 ( Reinforcement Learning,簡稱RL )的方法顯著優於傳統基於規則的控制,這種混合方法不僅能更精確預測未來製冷的需求,還能有效地調整冰水主機的運行設置,實現更高的能源效率。

    In recent years, with the continuous increase in overall energy consumption, the limited availability of resources has become a significant global challenge. Buildings constitute the largest category of energy consumption worldwide, with the highest energy consumption attributed to chiller systems. As energy consumption increases, associated environmental pollution and global greenhouse gas emissions also rise. Therefore, formulating effective energy management strategies for chiller systems has become a crucial aspect of energy-saving and carbon reduction strategies.
    First, this study employs the Long Short-Term Memory (LSTM) model in deep learning to predict the future cooling capacity of the chiller system. Subsequently, the predicted cooling capacity, along with the current cooling capacity and outdoor wet-bulb temperature, are used as environmental features in reinforcement learning (RL) for policy learning. The action involves adjusting the set temperature of the chiller. By obtaining rewards at each time step, we adaptively modify the weights of the chiller's set temperature to maximize the Coefficient of Performance (COP) of the chiller systems.
    Using operational data from the chiller system of Company H over the past year for empirical analysis, the results indicate that the combined LSTM and RL method significantly outperforms traditional rule-based control. This hybrid approach not only more accurately predicts future cooling demands but also effectively adjusts the chiller's operating settings, achieving higher energy efficiency.

    摘要 i 誌謝 ix 目錄 x 表目錄 xii 圖目錄 xiii 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 研究架構 3 第二章 文獻探討 4 2.1 冰水空調系統架構 4 2.2 冰水設定溫度模型 6 2.3 強化學習 7 2.3.1 Deep Q Network ( DQN ) 9 2.3.2 DQN 模型應用 11 第三章 研究方法 14 3.1 數據蒐集 14 3.2 研究方法流程 15 3.3 LSTM 預測模型的建立 18 3.3.1 LSTM 架構 18 3.3.2 LSTM 模型建立 19 3.4 強化學習模型建立 22 3.5 模型架構 26 第四章 研究實證與分析 28 4.1 LSTM 模型訓練結果 28 4.2 結合LSTM 與DQN 技術於冰水系統的策略優化 31 4.3 冰水系統性能與節能提升策略 36 第五章 結論與建議 38 參考文獻 39 附錄:表A 數字符號定義表 42

    Crawley, D.B., Lawrie, L.K., Winkelmann, F.C., Buhl, W.F., Huang, Y.J., Pedersen, C.O., Strand, R.K., Liesen, R.J., Fisher, D.E. and Witte, M.J. (2001), ‘EnergyPlus: Creating a new-generation building energy simulation program’, Energy Build, Vol. 33, pp. 319-331.
    Coulomb, D. (2016), ‘IIR challenges for 2016’, International Journal of Refrigeration, Vol. 62, IV.
    Esrafilian-Najafabadi, M. and Haghighat, F. (2022), ‘Towards self-learning control of HVAC systems with the consideration of dynamic occupancy patterns: Application of model-free deep reinforcement learning’, Building and Environment, Vol. 226, 109747.
    Fu, Q., Chen, X.Y., Ma, S.A., Fang, N.W., Xing, B. and Chen, J.P. (2022), ‘Optimal control method of HVAC based on multi-agent deep reinforcement learning’, Energy Build, Vol. 270, 112284.
    Gupta, R. and Puri, I.K. (2021), ‘Waste heat recovery in a data center with an adsorption chiller: Technical and economic analysis’, Energy Conversion and Management, Vol. 245, 114576.
    Henze, G.P. and Schoenmann, J. (2003), ‘Evaluation of reinforcement learning control for thermal energy storage systems’, HVAC&R Research, Vol. 9, pp. 259-275.
    He, K., Fu, Q.M., Lu, Y., Wang, Y.Z., Luo, J., Wu, H.J. and Chen, J.P. (2023), ‘Predictive control optimization of chiller plants based on deep reinforcement learning’, Journal of Building Engineering, Vol. 76, 107158.
    Ho, W.T. and Yu, F.W. (2021), ‘Chiller system optimization using k nearest neighbour regression’, Journal of Cleaner Production, Vol. 303, 127050.
    Karami, M. and Wang, L.P. (2018), ‘Particle Swarm optimization for control operation of an all-variable speed water-cooled chiller plant’, Applied Thermal Engineering, Vol. 130, pp. 962-978.
    Liu, S.M. and Henze, G.P. (2006), ‘Experimental analysis of simulated reinforcement learning control for active and passive building thermal storage inventory Part 2: Results and analysis’, Energy and Buildings, Vol. 38, pp. 148-161.
    Lu, L., Cai, W.J., Xie, L.H., Li, S.J. and Soh, Y.C. (2005), ‘HVAC system optimization—in-building section’, Energy and Buildings, Vol. 37, pp. 11-22.
    Mnih, V., Kavukcuoglu, K. and Silver, D. (2015), ‘Human-level control through deep reinforcement learning’, Nature, Vol. 518, pp. 529-533.
    Qiu, S., Li, Z. and Li, Z. (2021), Model-Free Optimal Control Method for Chilled Water Pumps Based on Multi-objective Optimization: Engineering Application. In Proceedings of the 2021 ASHRAE Virtual Conference, Phoenix, AZ, USA.
    Qiu, S.N., Li, Z.H., Li, Z.W. and Wu, Q. (2022), ‘Comparative evaluation of different Multi-Agent reinforcement learning mechanisms in condenser water system control’, Buildings, Vol. 12, 12081092.
    Qiu, S.N., Li, Z.H., Fan, D.L., He, R.K., Dai, X.H. and Li, Z.W. (2022), ‘Chilled water temperature resetting using model-free reinforcement learning: Engineering application’, Energy and Buildings, Vol. 255, 111694.
    Sutton, R. S. and Barto, A.G. (2018), ‘Reinforcement learning: An introduction second edition introduction’, MIT press, pp. 1-22.
    Sala-Cardoso, E., Delgado-Prieto, M., Kampouropoulos, K. and Romeral, L. (2020), ‘Predictive chiller operation: a data-driven loading and scheduling approach’, Energy Build, Vol. 208, 109639.
    Thu, K., Saththasivam, J., Saha, B.B., Chua, K.J., Murthy, S.S. and Ng, K.C (2017),‘Experimental investigation of a mechanical vapour compression chiller at elevated chilled water temperatures’, Applied Thermal Engineering, Vol. 123, pp. 226-233.
    Wang, L., Lee, E.W.M. and Yuen, R.K.K. (2018), ‘A practical approach to chiller plants optimisation’, Energy Build, Vol. 169, pp. 332-343.
    Wang, Z. and Hong, T.Z. (2020), ‘Reinforcement learning for building controls: the opportunities and challenges’, Applied Energy, Vol. 269, 115036.

    無法下載圖示 校內:2029-05-23公開
    校外:2029-05-23公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE