簡易檢索 / 詳目顯示

研究生: 宋碧姍
Sung, Pi-Shan
論文名稱: 神經新生現象於化療誘發認知功能障礙之角色與治療
The Impact of Neurogenesis on Chemotherapy-Induced Cognitive Impairment - The Role and Potential Therapeutics
指導教授: 蔡坤哲
Tsai, Kuen-Jer
陳志弘
Chen, Chih-Hung
學位類別: 博士
Doctor
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 103
中文關鍵詞: 認知功能障礙認知功能曲線神經新生化療相關認知功能障礙動物模型紫杉醇
外文關鍵詞: Cognitive impairment, Cognitive trajectory, Neurogenesis, Chemotherapy-induced cognitive impairment, Animal model, Paclitaxel
ORCID: 0000-0003-2505-7583
相關次數: 點閱:94下載:28
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 認知功能障礙所影響的認知功能層面包括學習、記憶、感知、語言、專注力及問題解決能力。嚴重程度可能從輕微認知功能障礙、輕度至重度失智症。成因可能來自原發性腦退化性疾病、腦部相關疾患、身體系統性影響腦部功能,比如感染、發炎、內分泌、營養、藥物等因素。而化療藥物所引發之認知功能障礙 (chemotherapy-induced cognitive impairment, CICI) 為其中一藥物給予身體系統性影響腦部而導致之認知功能障礙,為一常見且越來越為人所認知之化療藥物的可能副作用。直至目前為止,其致病機轉尚未完全釐清,而不同化療藥物所誘發之認知功能疾患之致病機轉可能不同,但有動物實驗及人體影像證據顯示化療所導致之認知及情緒障礙可能與海馬迴受損相關。CICI病患在影像學研究上可見海馬迴萎縮,而阿茲海默症的研究及基因相關研究發現,神經新生之路徑影響可能影響海馬迴體積。因此,化療藥物誘發之腦部神經新生受損可能為CICI的其中一個致病機轉。在我們過去所做的文獻回顧發現,會影響神經新生相關的因素包含基因、環境、藥物等造成內生性路徑及外生性路徑的影響,其中包括神經再生滋養因子 (brain-derived neurotrophic factor, BDNF) 及發炎現象 (inflammation)。因此,在我們的動物研究模型中,我們探討神經新生現象在CICI所扮演的角色及其可能之分子機轉。首先,我們使用紫杉醇 (paclitaxel) 在小鼠上建立CICI模型,並證實神經新生受損確實造成CICI小鼠的記憶功能障礙及情緒障礙。我們同時發現CICI小鼠在紫杉醇注射後造成發炎細胞素(inflammatory cytokine)的改變。為進一步證實神經新生在 CICI我們同時也在CICI小鼠模型上進一步證實memantine將可能透過調整發炎現象及促進BDNF釋放而成為CICI的潛力治療方式,但不同memantine治療方式所導致對於發炎現象的調節效果不同,而造成情緒障礙治療效果不一。為了進一步將基礎實驗推進到人體實驗,我們進一步進行了前瞻性化療病患的收案計畫,並同步進行前瞻性中風病患的收案計畫作為比較,進一步探討癌症病患接受化療藥物後的認知功能曲線以及可能的影響因子,並以中風病患之認知功能數據作為比較。未來研究也將進一步探討memantine在化療病患認知功能的治療效益。

    Cognitive disorders, also known as neurocognitive disorders, affect the ability of learning, memory, perceptual-motor function, language, attention, and problem solving. The severity of cognitive disorders is ranged from mild cognitive impairment, and mild to severe dementia. Cognitive disorders may be caused by primary neurologic, neuropsychiatric, systemic or medical conditions, including the effects of chronic infection, inflammation, metabolic, nutrition deficiency or drug exposure. Among these cognitive disorders due to various etiologies, chemotherapy-induced cognitive impairment (CICI), is recognized as a frequent adverse effect of cancer treatment. Until now, the definite mechanism of CICI has remained unclear, and various chemotherapeutic agents may lead to clinical symptoms of CICI through different mechanisms. An increasing body of literature from animal studies and neuroimaging studies in cancer patients suggests a possible relationship between chemotherapy induced hippocampal damage and the spectrum of neurocognitive deficits and mood alterations. Hippocampal atrophy may be observed in CICI patients. The evidence from previous Alzheimer’s disease (AD) model and genome-wide association analyses showed that neurogenesis-related pathways are also associated with changes in hippocampal volume. Therefore, the change of neurogenesis may play a role in CICI development. The evidence from our review study showed that genetic, environmental, and pharmacological factors may play a role in regulating adult hippocampal neurogenesis through multiple intrinsic and extrinsic factors. Among them, the expression pattern of neurotrophic growth factors and disease related inflammation may be a potent factor for the change of neurogenesis. Therefore, in our study, we aimed to characterize the role of neurogenesis in CICI and to elucidate the potential molecular mechanism by which chemotherapeutic agents induced impaired neurogenesis. In our basic study, we created a paclitaxel-treated mice as our CICI model and demonstrated the correlation between impaired neurogenesis and the clinical symptoms of CICI. The changes of inflammatory cytokine were also noted in our CICI model. In addition, we demonstrated that memantine may serve as a potential therapeutic agent for paclitaxel-induced CICI by modulating neurogenesis and inflammation. However, the treatment regimen may lead to variations in the treatment efficacy, especially in terms of mood dysfunction. Then, we further performed a prospective cohort study to observe the cognitive changes in fresh diagnosed cancer patients while receiving chemotherapy. For comparison, another prospective study was performed to enroll post-stroke patients for comparison. We hope to describe the cognitive trajectory in cancer patients receiving chemotherapy and to demonstrate the potential influencing factors on this cognitive trajectory. Further translational studies may be developed to evaluate the clinical efficacy of memantine in human CICI studies.

    List of tables 6 List of figures 7 CHAPTER 1 Introduction 8 CHAPTER 2 Methods 22 CHAPTER 3 Results 39 CHAPTER 4 Summery and Discussion 66 CHAPTER 5 Perspectives 78 Publication list 79 Abbreviation list 80 Reference 92

    1. American Psychiatric Association A. Diagnostic and statistical manual of mental disorders: American Psychiatric Association Washington, DC, 1980.
    2. Stern Y, Barnes CA, Grady C, Jones RN, Raz N. Brain reserve, cognitive reserve, compensation, and maintenance: Operationalization, validity, and mechanisms of cognitive resilience. Neurobiol Aging 2019;83:124-129.
    3. Rossor MN, Fox NC, Mummery CJ, Schott JM, Warren JD. The diagnosis of young-onset dementia. Lancet Neurol 2010;9:793-806.
    4. Okamoto Y, Ihara M, Fujita Y, Ito H, Takahashi R, Tomimoto H. Cortical microinfarcts in alzheimer's disease and subcortical vascular dementia. Neuroreport 2009;20:990-996.
    5. Alosco ML, Sugarman MA, Besser LM, et al. A clinicopathological investigation of white matter hyperintensities and alzheimer's disease neuropathology. J Alzheimers Dis 2018;63:1347-1360.
    6. R AA. Risk factors for alzheimer's disease. Folia Neuropathol 2019;57:87-105.
    7. Kalaria RN, Ballard C. Overlap between pathology of alzheimer disease and vascular dementia. Alzheimer Dis Assoc Disord 1999;13 Suppl 3:S115-123.
    8. Hung PH, Yeh CC, Hsiao CY, et al. End stage renal disease is associated with development of dementia. Oncotarget 2017;8:107348-107355.
    9. Sung PS, Yeh CC, Wang LC, et al. Increased risk of dementia in patients with non-apnea sleep disorder. Curr Alzheimer Res 2017;14:309-316.
    10. Gale SA, Acar D, Daffner KR. Dementia. Am J Med 2018;131:1161-1169.
    11. Belrose JC, Noppens RR. Anesthesiology and cognitive impairment: A narrative review of current clinical literature. BMC Anesthesiol 2019;19:241.
    12. Chatterjee S, Talwar A, Aparasu RR. Anticholinergic medications and risk of dementia in older adults: Where are we now? Expert Opin Drug Saf 2020;19:1251-1267.
    13. Andrade AG, Bubu OM, Varga AW, Osorio RS. The relationship between obstructive sleep apnea and alzheimer's disease. J Alzheimers Dis 2018;64:S255-s270.
    14. Wang RP, Ho YS, Leung WK, Goto T, Chang RC. Systemic inflammation linking chronic periodontitis to cognitive decline. Brain Behav Immun 2019;81:63-73.
    15. Solas M, Milagro FI, Ramírez MJ, Martínez JA. Inflammation and gut-brain axis link obesity to cognitive dysfunction: Plausible pharmacological interventions. Curr Opin Pharmacol 2017;37:87-92.
    16. Wefel JS, Schagen SB. Chemotherapy-related cognitive dysfunction. Curr Neurol Neurosci Rep 2012;12:267-275.
    17. de Ruiter MB, Reneman L, Boogerd W, et al. Cerebral hyporesponsiveness and cognitive impairment 10 years after chemotherapy for breast cancer. Hum Brain Mapp 2011;32:1206-1219.
    18. Mounier NM, Abdel-Maged AE, Wahdan SA, Gad AM, Azab SS. Chemotherapy-induced cognitive impairment (cici): An overview of etiology and pathogenesis. Life Sci 2020;258:118071.
    19. Dietrich J, Prust M, Kaiser J. Chemotherapy, cognitive impairment and hippocampal toxicity. Neuroscience 2015;309:224-232.
    20. Soffietti R, Trevisan E, Rudà R. Neurologic complications of chemotherapy and other newer and experimental approaches. Handb Clin Neurol 2014;121:1199-1218.
    21. Bergouignan L, Lefranc JP, Chupin M, Morel N, Spano JP, Fossati P. Breast cancer affects both the hippocampus volume and the episodic autobiographical memory retrieval. PloS one 2011;6:e25349.
    22. Horgusluoglu-Moloch E, Risacher SL, Crane PK, et al. Genome-wide association analysis of hippocampal volume identifies enrichment of neurogenesis-related pathways. Sci Rep 2019;9:14498.
    23. Horgusluoglu-Moloch E, Nho K, Risacher SL, et al. Targeted neurogenesis pathway-based gene analysis identifies adora2a associated with hippocampal volume in mild cognitive impairment and alzheimer's disease. Neurobiol Aging 2017;60:92-103.
    24. Moreno-Jiménez EP, Flor-García M, Terreros-Roncal J, et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with alzheimer's disease. Nat Med 2019;25:554-560.
    25. Galvan V, Jin K. Neurogenesis in the aging brain. Clin Interv Aging 2007;2:605-610.
    26. Deng W, Aimone JB, Gage FH. New neurons and new memories: How does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 2010;11:339-350.
    27. Wang H, Warner-Schmidt J, Varela S, Enikolopov G, Greengard P, Flajolet M. Norbin ablation results in defective adult hippocampal neurogenesis and depressive-like behavior in mice. Proc Natl Acad Sci U S A 2015;112:9745-9750.
    28. Eriksson PS, Perfilieva E, Björk-Eriksson T, et al. Neurogenesis in the adult human hippocampus. Nat Med 1998;4:1313.
    29. Knoth R, Singec I, Ditter M, et al. Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PLoS One 2010;5:e8809.
    30. Sanai N, Nguyen T, Ihrie RA, et al. Corridors of migrating neurons in the human brain and their decline during infancy. Nature 2011;478:382.
    31. Kumar A, Pareek V, Faiq MA, Ghosh SK, Kumari C. Adult neurogenesis in humans: A review of basic concepts, history, current research, and clinical implications. Innov Clin Neurosci 2019;16:30-37.
    32. Sorrells SF, Paredes MF, Cebrian-Silla A, et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 2018;555:377-381.
    33. Boldrini M, Fulmore CA, Tartt AN, et al. Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell 2018;22:589-599.e585.
    34. Moreno-Jimenez EP, Flor-Garcia M, Terreros-Roncal J, et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with alzheimer's disease. Nat Med 2019;25:554-560.
    35. Gage FH. Adult neurogenesis in mammals. Science 2019;364:827-828.
    36. Doetsch F, Hen R. Young and excitable: The function of new neurons in the adult mammalian brain. Curr Opin Neurobiol 2005;15:121-128.
    37. Horgusluoglu E, Nudelman K, Nho K, Saykin AJ. Adult neurogenesis and neurodegenerative diseases: A systems biology perspective. Am J Med Genet B Neuropsychiatr Genet 2017;174:93-112.
    38. Levone BR, Cryan JF, O'Leary OF. Role of adult hippocampal neurogenesis in stress resilience. Neurobiol Stress 2015;1:147-155.
    39. Sahay A, Scobie KN, Hill AS, et al. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 2011;472:466-470.
    40. Bruel-Jungerman E, Rampon C, Laroche S. Adult hippocampal neurogenesis, synaptic plasticity and memory: Facts and hypotheses. Rev Neurosci 2007;18:93-114.
    41. Goodman T, Trouche S, Massou I, et al. Young hippocampal neurons are critical for recent and remote spatial memory in adult mice. Neuroscience 2010;171:769-778.
    42. Akers KG, Martinez-Canabal A, Restivo L, et al. Hippocampal neurogenesis regulates forgetting during adulthood and infancy. Science 2014;344:598-602.
    43. Anacker C, Luna VM, Stevens GS, et al. Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus. Nature 2018;559:98-102.
    44. Elder GA, De Gasperi R, Gama Sosa MA. Research update: Neurogenesis in adult brain and neuropsychiatric disorders. Mt Sinai J Med 2006;73:931-940.
    45. Bielefeld P, Dura I, Danielewicz J, et al. Insult-induced aberrant hippocampal neurogenesis: Functional consequences and possible therapeutic strategies. Behav Brain Res 2019;372:112032.
    46. Hayashi Y, Jinnou H, Sawamoto K, Hitoshi S. Adult neurogenesis and its role in brain injury and psychiatric diseases. J Neurochem 2018;147:584-594.
    47. Winner B, Kohl Z, Gage FH. Neurodegenerative disease and adult neurogenesis. Eur J Neurosci 2011;33:1139-1151.
    48. Grote HE, Hannan AJ. Regulators of adult neurogenesis in the healthy and diseased brain. Clin Exp Pharmacol Physiol 2007;34:533-545.
    49. Sah N, Peterson BD, Lubejko ST, Vivar C, van Praag H. Running reorganizes the circuitry of one-week-old adult-born hippocampal neurons. Sci Rep 2017;7:10903.
    50. Yamada J, Nadanaka S, Kitagawa H, Takeuchi K, Jinno S. Increased synthesis of chondroitin sulfate proteoglycan promotes adult hippocampal neurogenesis in response to enriched environment. J Neurosci 2018;38:8496-8513.
    51. Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature 1997;386:493-495.
    52. Schoenfeld TJ, McCausland HC, Morris HD, Padmanaban V, Cameron HA. Stress and loss of adult neurogenesis differentially reduce hippocampal volume. Biol Psychiatry 2017;82:914-923.
    53. Mahar I, Bambico FR, Mechawar N, Nobrega JN. Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neurosci Biobehav Rev 2014;38:173-192.
    54. Luo J, Daniels SB, Lennington JB, Notti RQ, Conover JC. The aging neurogenic subventricular zone. Aging Cell 2006;5:139-152.
    55. Enwere E, Shingo T, Gregg C, Fujikawa H, Ohta S, Weiss S. Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. J Neurosci 2004;24:8354-8365.
    56. Maslov AY, Barone TA, Plunkett RJ, Pruitt SC. Neural stem cell detection, characterization, and age-related changes in the subventricular zone of mice. J Neurosci 2004;24:1726-1733.
    57. Tobin MK, Musaraca K, Disouky A, et al. Human hippocampal neurogenesis persists in aged adults and alzheimer's disease patients. Cell Stem Cell 2019;24:974-982.e973.
    58. Lie DC, Colamarino SA, Song HJ, et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature 2005;437:1370-1375.
    59. Zhang L, Yang X, Yang S, Zhang J. The wnt /beta-catenin signaling pathway in the adult neurogenesis. Eur J Neurosci 2011;33:1-8.
    60. Imayoshi I, Sakamoto M, Yamaguchi M, Mori K, Kageyama R. Essential roles of notch signaling in maintenance of neural stem cells in developing and adult brains. J Neurosci 2010;30:3489-3498.
    61. Ables JL, Decarolis NA, Johnson MA, et al. Notch1 is required for maintenance of the reservoir of adult hippocampal stem cells. J Neurosci 2010;30:10484-10492.
    62. Aguirre A, Rubio ME, Gallo V. Notch and egfr pathway interaction regulates neural stem cell number and self-renewal. Nature 2010;467:323-327.
    63. Lai K, Kaspar BK, Gage FH, Schaffer DV. Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat Neurosci 2003;6:21-27.
    64. Conover JC, Doetsch F, Garcia-Verdugo JM, Gale NW, Yancopoulos GD, Alvarez-Buylla A. Disruption of eph/ephrin signaling affects migration and proliferation in the adult subventricular zone. Nat Neurosci 2000;3:1091-1097.
    65. Chumley MJ, Catchpole T, Silvany RE, Kernie SG, Henkemeyer M. Ephb receptors regulate stem/progenitor cell proliferation, migration, and polarity during hippocampal neurogenesis. J Neurosci 2007;27:13481-13490.
    66. Singh RP, Shiue K, Schomberg D, Zhou FC. Cellular epigenetic modifications of neural stem cell differentiation. Cell Transplant 2009;18:1197-1211.
    67. Tsujimura K, Abematsu M, Kohyama J, Namihira M, Nakashima K. Neuronal differentiation of neural precursor cells is promoted by the methyl-cpg-binding protein mecp2. Exp Neurol 2009;219:104-111.
    68. Ma DK, Jang MH, Guo JU, et al. Neuronal activity-induced gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 2009;323:1074-1077.
    69. Sun G, Yu RT, Evans RM, Shi Y. Orphan nuclear receptor tlx recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation. Proc Natl Acad Sci U S A 2007;104:15282-15287.
    70. Thiel G, Ekici M, Rossler OG. Re-1 silencing transcription factor (rest): A regulator of neuronal development and neuronal/endocrine function. Cell Tissue Res 2015;359:99-109.
    71. Sun CN, Chuang HC, Wang JY, et al. The a2a adenosine receptor rescues neuritogenesis impaired by p53 blockage via kif2a, a kinesin family member. Dev Neurobiol 2010;70:604-621.
    72. Wittko IM, Schanzer A, Kuzmichev A, et al. Vegfr-1 regulates adult olfactory bulb neurogenesis and migration of neural progenitors in the rostral migratory stream in vivo. J Neurosci 2009;29:8704-8714.
    73. Leventhal C, Rafii S, Rafii D, Shahar A, Goldman SA. Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma. Mol Cell Neurosci 1999;13:450-464.
    74. Yuan H, Chen R, Wu L, et al. The regulatory mechanism of neurogenesis by igf-1 in adult mice. Mol Neurobiol 2015;51:512-522.
    75. Zhang Q, Liu G, Wu Y, Sha H, Zhang P, Jia J. Bdnf promotes egf-induced proliferation and migration of human fetal neural stem/progenitor cells via the pi3k/akt pathway. Molecules 2011;16:10146-10156.
    76. Funa K, Sasahara M. The roles of pdgf in development and during neurogenesis in the normal and diseased nervous system. J Neuroimmune Pharmacol 2014;9:168-181.
    77. Palmer TD, Willhoite AR, Gage FH. Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 2000;425:479-494.
    78. Shen Q, Wang Y, Kokovay E, et al. Adult svz stem cells lie in a vascular niche: A quantitative analysis of niche cell-cell interactions. Cell Stem Cell 2008;3:289-300.
    79. Louissaint A, Jr., Rao S, Leventhal C, Goldman SA. Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron 2002;34:945-960.
    80. Chesnokova V, Pechnick RN, Wawrowsky K. Chronic peripheral inflammation, hippocampal neurogenesis, and behavior. Brain Behav Immun 2016;58:1-8.
    81. Fuster-Matanzo A, Llorens-Martin M, Hernandez F, Avila J. Role of neuroinflammation in adult neurogenesis and alzheimer disease: Therapeutic approaches. Mediators Inflamm 2013;2013:260925.
    82. Russo I, Barlati S, Bosetti F. Effects of neuroinflammation on the regenerative capacity of brain stem cells. J Neurochem 2011;116:947-956.
    83. Sierra A, Encinas JM, Deudero JJ, et al. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 2010;7:483-495.
    84. Walton NM, Sutter BM, Laywell ED, et al. Microglia instruct subventricular zone neurogenesis. Glia 2006;54:815-825.
    85. Ekdahl CT, Claasen J-H, Bonde S, Kokaia Z, Lindvall O. Inflammation is detrimental for neurogenesis in adult brain. Proceedings of the National Academy of Sciences 2003;100:13632-13637.
    86. Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis. Science 2003;302:1760-1765.
    87. Belarbi K, Arellano C, Ferguson R, Jopson T, Rosi S. Chronic neuroinflammation impacts the recruitment of adult-born neurons into behaviorally relevant hippocampal networks. Brain Behav Immun 2012;26:18-23.
    88. Islam O, Gong X, Rose-John S, Heese K. Interleukin-6 and neural stem cells: More than gliogenesis. Mol Biol Cell 2009;20:188-199.
    89. Ajmone-Cat MA, Cacci E, Ragazzoni Y, Minghetti L, Biagioni S. Pro-gliogenic effect of il-1alpha in the differentiation of embryonic neural precursor cells in vitro. J Neurochem 2010;113:1060-1072.
    90. Bachstetter AD, Morganti JM, Jernberg J, et al. Fractalkine and cx 3 cr1 regulate hippocampal neurogenesis in adult and aged rats. Neurobiol Aging 2011;32:2030-2044.
    91. Kiyota T, Ingraham KL, Swan RJ, Jacobsen MT, Andrews SJ, Ikezu T. Aav serotype 2/1-mediated gene delivery of anti-inflammatory interleukin-10 enhances neurogenesis and cognitive function in app+ps1 mice. Gene Ther 2012;19:724-733.
    92. Fan Q, Gayen M, Singh N, et al. The intracellular domain of cx3cl1 regulates adult neurogenesis and alzheimer's amyloid pathology. J Exp Med 2019;216:1891-1903.
    93. Wu Y, Peng H, Cui M, Whitney NP, Huang Y, Zheng JC. Cxcl12 increases human neural progenitor cell proliferation through akt-1/foxo3a signaling pathway. J Neurochem 2009;109:1157-1167.
    94. Huang F, Lan Y, Qin L, et al. Astragaloside iv promotes adult neurogenesis in hippocampal dentate gyrus of mouse through cxcl1/cxcr2 signaling. Molecules 2018;23.
    95. Wong G, Goldshmit Y, Turnley AM. Interferon-gamma but not tnf alpha promotes neuronal differentiation and neurite outgrowth of murine adult neural stem cells. Exp Neurol 2004;187:171-177.
    96. Liu YP, Lin HI, Tzeng SF. Tumor necrosis factor-alpha and interleukin-18 modulate neuronal cell fate in embryonic neural progenitor culture. Brain Res 2005;1054:152-158.
    97. Villeda SA, Luo J, Mosher KI, et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 2011;477:90-94.
    98. Green HF, Treacy E, Keohane AK, Sullivan AM, O'Keeffe GW, Nolan YM. A role for interleukin-1beta in determining the lineage fate of embryonic rat hippocampal neural precursor cells. Mol Cell Neurosci 2012;49:311-321.
    99. Vallieres L, Campbell IL, Gage FH, Sawchenko PE. Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6. J Neurosci 2002;22:486-492.
    100. Villeda SA, Luo J, Mosher KI, et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 2011;477:90-94.
    101. Dietrich J, Han R, Yang Y, Mayer-Pröschel M, Noble M. Cns progenitor cells and oligodendrocytes are targets of chemotherapeutic agents in vitro and in vivo. Journal of Biology 2006;5:22.
    102. Nokia MS, Anderson ML, Shors TJ. Chemotherapy disrupts learning, neurogenesis and theta activity in the adult brain. Eur J Neurosci 2012;36:3521-3530.
    103. Yang M, Kim JS, Song MS, et al. Cyclophosphamide impairs hippocampus-dependent learning and memory in adult mice: Possible involvement of hippocampal neurogenesis in chemotherapy-induced memory deficits. Neurobiol Learn Mem 2010;93:487-494.
    104. Lyons L, Elbeltagy M, Bennett G, Wigmore P. The effects of cyclophosphamide on hippocampal cell proliferation and spatial working memory in rat. PLoS One 2011;6:e21445.
    105. Seigers R, Schagen SB, Beerling W, et al. Long-lasting suppression of hippocampal cell proliferation and impaired cognitive performance by methotrexate in the rat. Behav Brain Res 2008;186:168-175.
    106. Han R, Yang YM, Dietrich J, Luebke A, Mayer-Pröschel M, Noble M. Systemic 5-fluorouracil treatment causes a syndrome of delayed myelin destruction in the central nervous system. Journal of Biology 2008;7:12.
    107. Christie LA, Acharya MM, Parihar VK, Nguyen A, Martirosian V, Limoli CL. Impaired cognitive function and hippocampal neurogenesis following cancer chemotherapy. Clin Cancer Res 2012;18:1954-1965.
    108. Lee BE, Choi BY, Hong DK, et al. The cancer chemotherapeutic agent paclitaxel (taxol) reduces hippocampal neurogenesis via down-regulation of vesicular zinc. Sci Rep 2017;7:11667.
    109. Panoz-Brown D, Carey LM, Smith AE, et al. The chemotherapeutic agent paclitaxel selectively impairs reversal learning while sparing prior learning, new learning and episodic memory. Neurobiol Learn Mem 2017;144:259-270.
    110. Hurria A, Hurria A, Zuckerman E, et al. A prospective, longitudinal study of the functional status and quality of life of older patients with breast cancer receiving adjuvant chemotherapy. J Am Geriatr Soc 2006;54:1119-1124.
    111. Tanimukai H, Kanayama D, Omi T, Takeda M, Kudo T. Paclitaxel induces neurotoxicity through endoplasmic reticulum stress. Biochem Biophys Res Commun 2013;437:151-155.
    112. Huehnchen P, Boehmerle W, Springer A, Freyer D, Endres M. A novel preventive therapy for paclitaxel-induced cognitive deficits: Preclinical evidence from c57bl/6 mice. Transl Psychiatry 2017;7:e1185.
    113. Wefel JS, Saleeba AK, Buzdar AU, Meyers CA. Acute and late onset cognitive dysfunction associated with chemotherapy in women with breast cancer. Cancer 2010;116:3348-3356.
    114. Muallaoğlu S, Koçer M, Güler N. Acute transient encephalopathy after weekly paclitaxel infusion. Med Oncol 2012;29:1297-1299.
    115. Kesler S, Janelsins M, Koovakkattu D, et al. Reduced hippocampal volume and verbal memory performance associated with interleukin-6 and tumor necrosis factor-alpha levels in chemotherapy-treated breast cancer survivors. Brain Behav Immun 2013;30 Suppl:S109-116.
    116. Chesnokova V, Pechnick RN, Wawrowsky K. Chronic peripheral inflammation, hippocampal neurogenesis, and behavior. Brain Behav Immun 2016.
    117. Sung PS, Lin PY, Liu CH, Su HC, Tsai KJ. Neuroinflammation and neurogenesis in alzheimer's disease and potential therapeutic approaches. Int J Mol Sci 2020;21.
    118. Maekawa M, Namba T, Suzuki E, Yuasa S, Kohsaka S, Uchino S. Nmda receptor antagonist memantine promotes cell proliferation and production of mature granule neurons in the adult hippocampus. Neurosci Res 2009;63:259-266.
    119. Cahill SP, Cole JD, Yu RQ, Clemans-Gibbon J, Snyder JS. Differential effects of extended exercise and memantine treatment on adult neurogenesis in male and female rats. Neuroscience 2018;390:241-255.
    120. Rosi S, Vazdarjanova A, Ramirez-Amaya V, Worley PF, Barnes CA, Wenk GL. Memantine protects against lps-induced neuroinflammation, restores behaviorally-induced gene expression and spatial learning in the rat. Neuroscience 2006;142:1303-1315.
    121. Lv L, Mao S, Dong H, Hu P, Dong R. Pathogenesis, assessments, and management of chemotherapy-related cognitive impairment (crci): An updated literature review. J Oncol 2020;2020:3942439.
    122. Lee KP, Chang AYW, Sung PS. Association between blood pressure, blood pressure variability, and post-stroke cognitive impairment. Biomedicines 2021;9.
    123. Mok VC, Lam BY, Wong A, Ko H, Markus HS, Wong LK. Early-onset and delayed-onset poststroke dementia - revisiting the mechanisms. Nat Rev Neurol 2017;13:148-159.
    124. Atarod D, Eskandari-Sedighi G, Pazhoohi F, Karimian SM, Khajeloo M, Riazi GH. Microtubule dynamicity is more important than stability in memory formation: An in vivo study. J Mol Neurosci 2015;56:313-319.
    125. Hua MS, Chang SH, Chen ST. Factor structure and age effects with an aphasia test battery in normal taiwanese adults. Neuropsychology 1997;11:156-162.
    126. Lau KK, Li L, Schulz U, et al. Total small vessel disease score and risk of recurrent stroke: Validation in 2 large cohorts. Neurology 2017;88:2260-2267.
    127. Staals J, Makin SD, Doubal FN, Dennis MS, Wardlaw JM. Stroke subtype, vascular risk factors, and total mri brain small-vessel disease burden. Neurology 2014;83:1228-1234.
    128. Staals J, Makin SDJ, Doubal FN, Dennis MS, Wardlaw JM. Stroke subtype, vascular risk factors, and total mri brain small-vessel disease burden. 2014;83:1228-1234.
    129. Lau KK, Li L, Schulz U, et al. Total small vessel disease score and risk of recurrent stroke. Validation in 2 large cohorts 2017;88:2260-2267.
    130. Scheltens P, Leys D, Barkhof F, et al. Atrophy of medial temporal lobes on mri in "probable" alzheimer's disease and normal ageing: Diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 1992;55:967-972.
    131. Scheltens P, Leys D, Barkhof F, et al. Atrophy of medial temporal lobes on mri in "probable" alzheimer's disease and normal ageing: Diagnostic value and neuropsychological correlates. Journal of Neurology, Neurosurgery & Psychiatry 1992;55:967-972.
    132. Adams HP, Jr., Bendixen BH, Kappelle LJ, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. Toast. Trial of org 10172 in acute stroke treatment. Stroke 1993;24:35-41.
    133. Hachinski V, Iadecola C, Petersen RC, et al. National institute of neurological disorders and stroke-canadian stroke network vascular cognitive impairment harmonization standards. Stroke 2006;37:2220-2241.
    134. Goldstein LB, Bertels C, Davis JN. Interrater reliability of the nih stroke scale. Arch Neurol 1989;46:660-662.
    135. Jones BL, Nagin DS, Roeder K. A sas procedure based on mixture models for estimating developmental trajectories. Sociological methods & research 2001;29:374-393.
    136. Wang WF, Hung CH, Li CY. Development trajectories and predictors of the role commitment of nursing preceptors. J Nurs Res 2018;26:168-176.
    137. Ahles TA, Saykin AJ. Candidate mechanisms for chemotherapy-induced cognitive changes. Nat Rev Cancer 2007;7:192-201.
    138. Brown T, Sykes D, Allen AR. Implications of breast cancer chemotherapy-induced inflammation on the gut, liver, and central nervous system. Biomedicines 2021;9.
    139. Tanimukai H, Kanayama D, Omi T, Takeda M, Kudo T. Paclitaxel induces neurotoxicity through endoplasmic reticulum stress. Biochem Biophys Res Commun 2013;437:151-155.
    140. You Z, Zhang S, Shen S, et al. Cognitive impairment in a rat model of neuropathic pain: Role of hippocampal microtubule stability. Pain 2018;159:1518-1528.
    141. Budni J, Feijo DP, Batista-Silva H, et al. Lithium and memantine improve spatial memory impairment and neuroinflammation induced by beta-amyloid 1-42 oligomers in rats. Neurobiol Learn Mem 2017;141:84-92.
    142. Liu PZ, Nusslock R. Exercise-mediated neurogenesis in the hippocampus via bdnf. Front Neurosci 2018;12:52.
    143. Marvanová M, Lakso M, Pirhonen J, Nawa H, Wong G, Castrén E. The neuroprotective agent memantine induces brain-derived neurotrophic factor and trkb receptor expression in rat brain. Mol Cell Neurosci 2001;18:247-258.
    144. Ishikawa R, Uchida C, Kitaoka S, Furuyashiki T, Kida S. Improvement of ptsd-like behavior by the forgetting effect of hippocampal neurogenesis enhancer memantine in a social defeat stress paradigm. Mol Brain 2019;12:68.
    145. Iosif RE, Ekdahl CT, Ahlenius H, et al. Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J Neurosci 2006;26:9703-9712.
    146. Jacobs BL, van Praag H, Gage FH. Adult brain neurogenesis and psychiatry: A novel theory of depression. Mol Psychiatry 2000;5:262-269.
    147. Revest JM, Dupret D, Koehl M, et al. Adult hippocampal neurogenesis is involved in anxiety-related behaviors. Mol Psychiatry 2009;14:959-967.
    148. Boufidou F, Lambrinoudaki I, Argeitis J, et al. Csf and plasma cytokines at delivery and postpartum mood disturbances. J Affect Disord 2009;115:287-292.
    149. Berthold-Losleben M, Himmerich H. The tnf-alpha system: Functional aspects in depression, narcolepsy and psychopharmacology. Curr Neuropharmacol 2008;6:193-202.
    150. Chen J, Song Y, Yang J, et al. The contribution of tnf-α in the amygdala to anxiety in mice with persistent inflammatory pain. Neurosci Lett 2013;541:275-280.
    151. Postal M, Appenzeller S. The importance of cytokines and autoantibodies in depression. Autoimmun Rev 2015;14:30-35.
    152. Becking K, Spijker AT, Hoencamp E, Penninx BW, Schoevers RA, Boschloo L. Disturbances in hypothalamic-pituitary-adrenal axis and immunological activity differentiating between unipolar and bipolar depressive episodes. PLoS One 2015;10:e0133898.
    153. Juruena MF, Eror F, Cleare AJ, Young AH. The role of early life stress in hpa axis and anxiety. Adv Exp Med Biol 2020;1191:141-153.
    154. Thomas AJ, Davis S, Morris C, Jackson E, Harrison R, O'Brien JT. Increase in interleukin-1beta in late-life depression. Am J Psychiatry 2005;162:175-177.
    155. Rossi S, Sacchetti L, Napolitano F, et al. Interleukin-1β causes anxiety by interacting with the endocannabinoid system. J Neurosci 2012;32:13896-13905.
    156. Zeng QZ, Yang F, Li CG, et al. Paclitaxel enhances the innate immunity by promoting nlrp3 inflammasome activation in macrophages. Front Immunol 2019;10:72.
    157. clinic M. Mechanism of action of memantine. 2021/02/01 ed2021.
    158. Thornton LM, Carson WE, 3rd, Shapiro CL, Farrar WB, Andersen BL. Delayed emotional recovery after taxane-based chemotherapy. Cancer 2008;113:638-647.
    159. Demontis F, Serra G. Failure of memantine to "reverse" quinpirole-induced hypomotility. World J Psychiatry 2016;6:215-220.
    160. Schwartz TL, Siddiqui UA, Raza S. Memantine as an augmentation therapy for anxiety disorders. Case Rep Psychiatry 2012;2012:749796.
    161. Lee SY, Chen SL, Chang YH, et al. The effects of add-on low-dose memantine on cytokine levels in bipolar ii depression: A 12-week double-blind, randomized controlled trial. J Clin Psychopharmacol 2014;34:337-343.
    162. Lu RB, Wang TY, Lee SY, et al. Add-on memantine may improve cognitive functions and attenuate inflammation in middle- to old-aged bipolar ii disorder patients. J Affect Disord 2021;279:229-238.
    163. Pendlebury ST, Rothwell PM. Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: A systematic review and meta-analysis. Lancet Neurol 2009;8:1006-1018.
    164. Levine DA, Gross AL, Briceño EM, et al. Sex differences in cognitive decline among us adults. JAMA Netw Open 2021;4:e210169.
    165. Mielke MM, Vemuri P, Rocca WA. Clinical epidemiology of alzheimer's disease: Assessing sex and gender differences. Clin Epidemiol 2014;6:37-48.
    166. Jack CR, Jr., Wiste HJ, Weigand SD, et al. Age, sex, and apoe ε4 effects on memory, brain structure, and β-amyloid across the adult life span. JAMA Neurol 2015;72:511-519.
    167. Prins ND, van Dijk EJ, den Heijer T, et al. Cerebral small-vessel disease and decline in information processing speed, executive function and memory. Brain 2005;128:2034-2041.
    168. Gennatas ED, Avants BB, Wolf DH, et al. Age-related effects and sex differences in gray matter density, volume, mass, and cortical thickness from childhood to young adulthood. J Neurosci 2017;37:5065-5073.
    169. Ballard C, Rowan E, Stephens S, Kalaria R, Kenny RA. Prospective follow-up study between 3 and 15 months after stroke: Improvements and decline in cognitive function among dementia-free stroke survivors >75 years of age. Stroke 2003;34:2440-2444.
    170. Wagle J, Farner L, Flekkoy K, et al. Early post-stroke cognition in stroke rehabilitation patients predicts functional outcome at 13 months. Dement Geriatr Cogn Disord 2011;31:379-387.
    171. Zietemann V, Georgakis MK, Dondaine T, et al. Early moca predicts long-term cognitive and functional outcome and mortality after stroke. Neurology 2018;91:e1838-e1850.
    172. Tsai CF, Lee WJ, Wang SJ, Shia BC, Nasreddine Z, Fuh JL. Psychometrics of the montreal cognitive assessment (moca) and its subscales: Validation of the taiwanese version of the moca and an item response theory analysis. Int Psychogeriatr 2012;24:651-658.
    173. Zhou Y, Ortiz F, Nuñez C, et al. Use of the moca in detecting early alzheimer's disease in a spanish-speaking population with varied levels of education. Dement Geriatr Cogn Dis Extra 2015;5:85-95.
    174. Lawrence AJ, Brookes RL, Zeestraten EA, Barrick TR, Morris RG, Markus HS. Pattern and rate of cognitive decline in cerebral small vessel disease: A prospective study. PLoS One 2015;10:e0135523.
    175. Tuladhar AM, Reid AT, Shumskaya E, et al. Relationship between white matter hyperintensities, cortical thickness, and cognition. Stroke 2015;46:425-432.
    176. Lambert C, Benjamin P, Zeestraten E, Lawrence AJ, Barrick TR, Markus HS. Longitudinal patterns of leukoaraiosis and brain atrophy in symptomatic small vessel disease. Brain 2016;139:1136-1151.
    177. Arba F, Quinn T, Hankey GJ, Ali M, Lees KR, Inzitari D. Cerebral small vessel disease, medial temporal lobe atrophy and cognitive status in patients with ischaemic stroke and transient ischaemic attack. Eur J Neurol 2017;24:276-282.
    178. Cordoliani-Mackowiak MA, Hénon H, Pruvo JP, Pasquier F, Leys D. Poststroke dementia: Influence of hippocampal atrophy. Arch Neurol 2003;60:585-590.
    179. Velickaite V, Ferreira D, Cavallin L, et al. Medial temporal lobe atrophy ratings in a large 75-year-old population-based cohort: Gender-corrected and education-corrected normative data. Eur Radiol 2018;28:1739-1747.
    180. Liu W, Wong A, Au L, et al. Influence of amyloid-β on cognitive decline after stroke/transient ischemic attack: Three-year longitudinal study. Stroke 2015;46:3074-3080.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE