簡易檢索 / 詳目顯示

研究生: 吳孟倫
Wu, Meng-Luen
論文名稱: 以基於協合應力偶理論之Hermitian C2有限層狀元素法進行功能性圓柱微米殼在週期性軸壓與圍壓組合載重作用下之三維動態不穩定性分析
3D Size-Dependent Dynamic Instability Analysis of FG Cylin-drical Microshells Subjected to Combinations of Periodic Axial Compression and External Pressure Using a Hermitian C2 Finite Layer Method Based on the Consistent Couple Stress Theory
指導教授: 吳致平
Wu, Chih-Ping
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 61
中文關鍵詞: 協合應力偶理論動態不穩定性有限層狀元素法功能性圓柱殼靜態挫屈三維分析
外文關鍵詞: Consistent couple stress theory, Dynamic instability, Finite layer methods, Functionally graded cylindrical shells, Static buckling, 3D analysis
相關次數: 點閱:70下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 基於協合應力偶理論(Consistent Couple Stress Theory, CCST),本文發展Hermitian C2有限層狀元素法(Finite Layer Method, FLM),用於分析受到週期性軸向壓縮和外圍壓力組合作用下具簡支承邊界條件的功能性(Functionally Graded, FG)圓柱微米殼的動態不穩定行為。上述 FLM 是將圓柱微米殼劃分為多層,每層的彈性場主變數在中曲面上假設為雙傅立葉函數分布,在厚度方向上則用Hermitian C2多項式插值擬合。本文的Hermitian C2 FLM 準確性和收斂速度將以文獻中的FG宏觀圓柱殼和單層納米碳管的精確二維解進行驗證。本文探討對簡支FG微米圓柱殼參數共振的第一主要不穩定區間和第一次要不穩定區間有影響的重要因素,其中包含材料尺度參數、材料特性梯度指數、半徑-厚度比、長度-半徑比、荷載大小,與靜態和動態荷載因子。本文提出的三維解決方案可以作為評估使用基於CCST和MCST的精細殼理論獲得的二維近似結果的參考。

    This work develops a three-dimensional (3D) weak formulation, based on the consistent couple stress theory (CCST), for analyzing the size-dependent dynamic instability behavior of simply-supported, functionally graded (FG) cylindrical microshells which are subjected to combinations of periodic axial compression and external pressure. In our formulation, the microshells are artificially divided into nl layers. The displacement components of each individual layer are selected as the primary variables, which are expanded as a double Fourier series in the in-plane domain and are interpolated with Hermitian C2 polynomials in the thickness direction. Incorporating the layer-wise displacement models into our weak formulation, we subsequently develop a Hermitian C2 finite layer method (FLM) for addressing the current issue. The accuracy and the convergence rate of our Hermitian C2 FLM are validated by comparing the solutions it produces with the accurate two-dimensional solutions of critical loads and critical pressure of FG cylindrical macroshells and single-walled carbon nanotubes, which were reported in the literature. The impacts of some essential factors on the first principal and first secondary instability regions of parametric resonance of simply-supported FG cylindrical microshells are examined and revealed to be significant. These factors, in particular, include the material length-scale parameter, the in-homogeneity index, the radius-to-thickness and length-to-radius ratios, the load magnitude ratio, and the static and dynamic load factors.

    摘要 I Extend Abstract II 誌謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 符號表 X 第一章 緒論 1 第二章 理論公式 4 2.1 起始應力 4 2.2 協合應力偶理論 7 2.3 廣義運動學 8 2.4 Hamilton定理 11 2.5有限層狀元素方程 13 2.6 Bolotin方法 16 2.6.1 主要不穩定區域 17 2.6.2 次要不穩定區域 18 第三章 數值範例 21 3.1 靜態挫屈分析 21 3.2動態不穩定分析 23 第四章 結論 27 參考文獻 29 附錄A 34 附錄B 37

    [1] Wu, C.P.; Li, K.W. Multi-objective optimization of functionally graded beams using a genetic algorithm with non-dominated sorting. J. Compos. Sci. 2021, 5, 92.
    [2] Ding, S.; Wu, C.P. Optimization of material composition to minimize the thermal stresses induced in FGM plates with temperature-dependent material properties. Int. J. Mech. Mater. Des. 2018, 14, 527-549.
    [3] Koizumi, M. FGM activities in Japan. Compos. Part B 1997, 28, 1-4.
    [4] Miyamoto, Y.; Kaysser, W.A.; Rabin, B.H.; Kawasaki, A.; Ford, R.G. Functionally Graded Materials: Design, Proceeding and Applications. Kluwer Academic: Boston, 1999.
    [5] Lam, D.C.C.; Yang, F.; Chong, A.C.M.; Wang, J.; Tong, P. Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 2003, 51, 1477-1508.
    [6] McFarland, A.W.; Colton, J.S. Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 2005, 15, 1060-1067.
    [7] Yang, F.; Chong, A.C.M.; Lam, D.C.C.; Tong, P. Couple stress-based strain gradient theory for elasticity. Int. J. Solids Struct. 2002, 39, 2731-2743.
    [8] Hadjesfandiari, A.R.; Dargush, G.F. Couple stress theory for solids. Int. J. Solids Struct. 2011, 48, 2496-2510.
    [9] Hadjesfandiari, A.R.; Dargush, G.F. Fundamental solutions for isotropic size-dependent couple stress elasticity. Int. J. Solids Struct. 2013, 50, 1253-1265.
    [10] Koiter, W.T. Couple stresses in the theory of elasticity, I and II. Proc. Roy. Netherlands Acad. Arts & Sci. 1964, 67, 17-44.
    [11] Mindlin, R.D.; Tiersten, H.F. Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 1962, 11, 415-448.
    [12] Toupin, R.A. Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 1962, 11, 385-414.
    [13] Argento, A.; Scott, R.A. Dynamic instability of layered anisotropic circular cylindrical shells, Part I: Theoretical de-velopment. J. Sound Vibr. 1993, 162, 311-322.
    [14] Argento, A.; Scott, R.A. Dynamic instability of layered anisotropic circular cylindrical shells, Part II: Numerical re-sults. J. Sound Vibr. 1993, 162, 323-332.
    [15] Xie, W.C. Dynamic Stability of Structures. Cambridge University Press: New York, 2006.
    [16] Bolotin, V.V. The Dynamic Stability of Elastic Systems. Holden-Day: San Francisco, 1964.
    [17] Ganapathi, M.; Balamurugan, V. Dynamic instability analysis of a laminated composite circular cylindrical shell. Comput. Struct. 1998, 69, 181-189.
    [18] Sofiyev, A.H.; Pancar, E.B. The effect of heterogeneity on the parametric instability of axially excited orthotropic con-ical shells. Thin-Walled Struct. 2017, 115, 240-246.
    [19] Bert, C.W.; Birman, V. Parametric instability of thick, orthotropic, circular cylindrical shells. Acta Mech. 1988, 71, 61-76.
    [20] Ng, T.Y.; Hua, L.; Lam, K.Y.; Loy, C.T. Parametric instability of conical shells by the generalized differential quadra-ture method. Int. J. Numer. Methods in Eng. 1999, 44, 819-837.
    [21] Wu, C.P.; Chiu, S.J. Thermally induced dynamic instability of laminated composite conical shells. Int. J. Solids Struct. 2002, 39, 3001-3021.
    [22] Sofiyev, A.H. Influences of shear stresses on the dynamic instability of exponentially graded sandwich cylindrical shells. Compos. Part B 2015, 77, 349-362.
    [23] Sofiyev, A.H. Parametric vibration of FGM conical shells under periodic lateral pressure within the shear deformation theory. Compos. Part B 2016, 89, 282-294.
    [24] Ganapathi, M.; Patel, B.P.; Sambandam, C.T.; Touratier, M. Dynamic instability analysis of circular conical shells. Compos. Struct. 1999, 46, 59-64.
    [25] Sahmani, S.; Ansari, R.; Gholami, R.; Darvizeh, A. Dynamic stability analysis of functionally graded higher-order shear deformable microshells based on the modified couple stress elasticity theory. Compos. Part B 2013, 51, 44-53.
    [26] Pham, Q.H.; Nguyen, P.C. Dynamic stability analysis of porous functionally graded microplates using a refined iso-geometric approach. Compos. Struct. 2022, 284, 115086.
    [27] Wu, C.P.; Hsu, C.H. Based on the consistent couple stress theory, a three-dimensional weak formulation for stress, deformation, and free vibration analyses of functionally graded microscale plates. Compos. Struct. 2022, 296, 115829.
    [28] Wu, C.P.; Lu, Y.A. A Hermite-family C1 finite layer method for the three-dimensional free vibration analysis of expo-nentially graded piezoelectric microplates based on the consistent couple stress theory. Int. J. Struct. Stab. Dyn. 2023, 23, 2350044.
    [29] Soldatos, K.P.; Ye, J.Q. Three-dimensional static, dynamic, thermoelastic and buckling analysis of homogeneous and laminated composite cylinders. Compos. Struct. 1994, 29, 131-143.
    [30] Ye, J.Q.; Soldatos, K.P. Three-dimensional buckling analysis of laminated composite hollow cylinders and cylindri-cal panels. Int. J. Solids and Struct. 1995, 32, 1949-1962.
    [31] Leissa, A.W. Buckling and postbuckling theory for laminated composite plates. In: Turvey GJ, Marshall IH (Eds). Buckling and Postbuckling of Composite Plates, Chapman and Hall: London, 1995.
    [32] Soldatos, K.P.; Ye, J.Q. Three-dimensional static, dynamic, thermoelastic and buckling analysis of homogeneous and laminated composite cylinders. Compos. Struct. 1994, 29, 131-143.
    [33] Ye, J.Q.; Soldatos, K.P. Three-dimensional buckling analysis of laminated composite hollow cylinders and cylindri-cal panels. Int. J. Solids and Struct. 1995, 32, 1949-1962.
    [34] Soldatos, K.P.; Hadjigeorgiou, V.P. Three-dimensional solution of the free vibration problem of homogeneous iso-tropic cylindrical shells and panels. J. Sound Vibr. 1990, 137, 369-384.
    [35] Wu, C.P.; Tsai, T.C. Exact solutions of functionally graded piezoelectric material sandwich cylinders by a modified Pagano method. Appl. Math.Modell. 2012, 36, 1910- 1930.
    [36] Wu, C.P.; Jiang, R.Y. A state space differential reproducing kernel method for the buckling analysis of carbon nano-tube-reinforced composite circular hollow cylinders. CMES-Comput. Model. Eng. Sci. 2014, 97, 239-279.
    [37] Vodenitcharova, T.; Ansourian, P. Buckling of circular cylindrical shells subject to uniform lateral pressure. Eng. Struct. 1996, 18, 604-614.
    [38] Shen, H.S. Postbuckling analysis of pressure-loaded functionally graded cylindrical shells in thermal environments. Eng. Struct. 2003, 25, 487-497.
    [39] Sofiyev, A.H. Vibration and stability of composite cylindrical shells containing an FG layer subjected to various loads. Struct. Eng. Mech. 2007, 27, 365-391.
    [40] Khazaeinejad, P.; Najafizadeh, M.M.; Jenabi, J. On the buckling of functionally graded cylindrical shells under combined external pressure and axial compression. J. Press. Vessel Technol. 2010, 132, 064501.
    [41] Mehralian, F.; Beni, Y.T.; Ansari, R. Size dependent buckling analysis of functionally graded piezoelectric cylindrical nanoshell. Compos. Struct. 2016, 152, 45-61.
    [42] Mehralian, F.; Beni, Y.T. Thermo-electro-mechanical buckling analysis of cylindrical nanoshell on the basis of modified couple stress theory. J. Mech. Sci. Technol. 2017, 31, 1773-1787.
    [43] Kim, S.E.; Kim, C.S. Buckling strength of the cylindrical shell and tank subjected to axially compressive loads. Thin-Walled Struct. 2002, 40, 329-353.
    [44] Sofiyev, A.H. Influences of shear stresses on the dynamic instability of exponentially graded sandwich cylindrical shells. Compos. Part B 2015, 77, 349-362.
    [45] Ng, T.Y.; Lam, K.Y.; Reddy, J.N. Parametric resonance of a rotating cylindrical shell subjected to periodic axial loads. J. Sound Vib. 1998, 214, 513-529.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE