研究生: |
葉佳昕 Yeh, Chia-Hsin |
---|---|
論文名稱: |
聚芴高分子藍光電激發光二極體元件變色機制之探討 The modulations of electroluminescence spectra on polyfluorene derivative based polymer light-emitting diodes |
指導教授: |
蔡錦俊
Tsai, Chin-Chun |
共同指導教授: |
郭宗枋
Guo, Tzung-Fang |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 91 |
中文關鍵詞: | 聚芴高分子 、有機發光二極體 、活化雙體 、缺陷 、共軛分子 |
外文關鍵詞: | polyfluorene, organic light-emitting diode, excimer, electromer, traps, conjugated |
相關次數: | 點閱:75 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
於本篇論文的研究中,我們以一藍光高分子Blue252為發光材料,探討其電激發光光譜變色機制。將發光元件施加一穩定電流,由電壓電流曲線特性中觀察搭配不同陰極金屬電極元件所填補的缺陷態量,而不同元件的缺陷態填補量使得在電激發頻譜中長波長的相對強度上有所差別,造成這樣的放光的機制分別為缺陷態填補完全的Excimer對應光譜中波長481nm和507nm位置與缺陷態尚未填補完全的Electromer對應光譜中波長573nm位置,前者是由於激發態與基態產生交互作用產生較短的綠光波段,後者則是由於材料的缺陷貢獻出較長且較寬的綠光波段。有機發光元件的變色機制部份,我們認為除了受到材料本身的化學特性影響外,元件中存在的缺陷態多寡亦是影響光譜變色的因素。
We studied the photoluminance(PL) and electroluminance (EL) in solid films of a blue polyfluorene derivative based co-polymer. The study is aimed to understand the source of low emission band at 2.1-2.58 eV in the polyfluorene-based conjugated materials. We observed the current-voltage characteristics corresponds to the filling quantity of traps with various cathode device. Trap dependence of EL spectra is measured by applying a steady current to the device and the EL spectra reveals that the observed difference in intensity of long wavelength is due to not only the trap-filled excimer located at 481nm and 507nm but the trap-filled incompletely electromer located at 573nm. The excimer is an excited-state dimer with a dissociate ground state formed in the perfect molecular structure while the electromer is formed in the defected structure. In addition to chemical characteristics of the material, the emission of the organic light-emitting diode at around 2.3eV is attributed to the quantity of traps in the device.
[1] S. R. Forrest, Org. Electronics 2003, 4, 45.
[2] J. Kido, M. Kimura, K. Nagai, Science 1995, 267, 1332.
[3] A. Bernanose, Br. J. Appl. Phys. 1955, 6, S54.
[4] H. Kallmann, M. Pope, Nature 1960, 186, 31.
[5] M. Schadt, Digby F. Williams, J. Chem. Phys. 1969, 50, 4364.
[6] R. H. Partridge, Polymer 1983, 24, 733.
[7] S. Hayashi, H. Etoh, S. Saito, Jpn. J. Appl. Phys. 1986, 25, L773
[8] C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 1987, 51, 913.
[9] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature 1990, 347, 539.
[10] D. Braun, A. J. Heeger, Appl. Phys. Lett. 1991, 58, 18, 1982.
[11] R. C. Evans,P. Douglas, C. J. Winscom, Coord. Chem. Rev. 2006, 250, 2093.
[12] J. K. Borchardt, Mater. Today 2004, 7, 25.
[13] A. C. Grimsdale, K. Müllen, Adv Polym Sci 2008, 212, 1.
[14] S. A. Chen, H. H. Lu, C. W. Huang, Adv Polym Sci 2008, 212, 49.
[15] K. H. Weinfurtner, H. Fujikawa, S. Tokito, Ya. Taga, Appl. Phys. Lett. 2000, 76, 2502.
[16] H. H. Lu, C. Y. Liu, T. H. Jen, J. L. Liao, H. E. Tseng, C. W. Huang, M. C. Hung, S. A. Chen, Macromolecules 2005, 38, 10829.
[17] U. Scherf, K. Miillen, Chem., Rapid Commun. 1991, 12, 489.
[18] U. Scherf, K. Miillen, Makromol. 1992, 25, 3546.
[19] R. Eisberg, R. Resnick, R. Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles, 2nd ed, Wiley, New York 1985, p294.
[20] R. Shankar, Principles of Quantum Mechanics, 2nd ed, Plenum Press, New York 1994, p406.
[21] M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature 1998, 395, 151.
[22] M. Segal, M. A. Baldo, R. J. Holmes, S. R. Forrest, Z. G. Soos , Phys. Rev. B 2003, 68, 075211.
[23] J. Kalinowski, W. Stampor, M. Cocchi, D. Virgili, V. Fattori, P. Di Marco, Phys. Rev. B 2002, 66, 235321.
[24] M. Pope, C. E. Swenberg, Electronic processes in Organic Crystals and Polymers, 2nd ed, Oxford University Press, New York 1999, p39
[25] U. Lemmer, S. Heun, R.F. Mahrt, U. Scherf, M. Hopmeier, U. Siegner, E.O. Go¨bel, K. Mu¨llen, H. Ba¨ssler, Chem. Phys. Lett. 1995, 240, 373.
[26] J. Cornil, A. J. Heeger, J. L. Bredas, Chem. Phys. Lett. 1997, 272,463.
[27] L. Romaner, A. Pogantsch, P. Scandiucci de Freitas, U. Scherf, M. Gaal, E. Zojer, E.J.W. List, Adv. Funct. Mater. 2003, 13, 597.
[28] J. Grüner, H.F. Wittmann, P.J. Hamer, R.H. Friend, J. Huber, U. Scherf, K. Müllen, S.C. Moratti, A.B. Holmes, Synth.Metals 1994, 67, 181.
[29] D. A. Skoog, F. J. Holler, T. A. Nieman, Principles of Instrumental Analysis, 5nd ed, Saunders College Pub., Philadelphia 1985, p329.
[30] U. Scherf, E. J. W. List, Adv. Mater. 2002, 14, 477.
[31] U. Scherf, E. J. W. List, Adv. Mater. 2002, 14, 374.
[32] E. Zojer, A. Pogantsch, E. Hennebicq, D. Beljonne, J. L. Brédas, P. Scandiucci de Freitas, U. Scherf, J. Chem. Phys. 2002, 117, 6794.
[33] M. Pope, C. E. Swenberg, Electronic processes in Organic Crystals and Polymers, 2nd ed, Oxford University Press, New York 1999, p49
[34] J. Kalinowski, G. Giro, M. Cocchi, V. Fattori, R. Zamboni, Chemical physics 2002, 277, 387.
[35] M. Pope, C. E. Swenberg, Electronic processes in Organic Crystals and Polymers, 2nd ed, Oxford University Press, New York 1999, p384.
[36] D. A. Skoog, F. J. Holler, T. A. Nieman, Principles of Instrumental Analysis, 5nd ed, p355.
[37]M. Pope, C. E. Swenberg, Electronic processes in Organic Crystals and Polymers, 2nd ed, Oxford University Press, New York 1999, p832.
[38] H. Bassler, B. Schweitzer, Acc. Chem. Res. 1999, 32, 173.
[39] M. Pope, C. E. Swenberg, Electronic processes in Organic Crystals and Polymers, 2nd ed, Oxford University Press, New York 1999, p24.
[40] H. Bassler, B. Schweitzer, Acc. Chem. Res. 1999, 32, 173.