簡易檢索 / 詳目顯示

研究生: 葉佳昕
Yeh, Chia-Hsin
論文名稱: 聚芴高分子藍光電激發光二極體元件變色機制之探討
The modulations of electroluminescence spectra on polyfluorene derivative based polymer light-emitting diodes
指導教授: 蔡錦俊
Tsai, Chin-Chun
共同指導教授: 郭宗枋
Guo, Tzung-Fang
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 91
中文關鍵詞: 聚芴高分子有機發光二極體活化雙體缺陷共軛分子
外文關鍵詞: polyfluorene, organic light-emitting diode, excimer, electromer, traps, conjugated
相關次數: 點閱:75下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 於本篇論文的研究中,我們以一藍光高分子Blue252為發光材料,探討其電激發光光譜變色機制。將發光元件施加一穩定電流,由電壓電流曲線特性中觀察搭配不同陰極金屬電極元件所填補的缺陷態量,而不同元件的缺陷態填補量使得在電激發頻譜中長波長的相對強度上有所差別,造成這樣的放光的機制分別為缺陷態填補完全的Excimer對應光譜中波長481nm和507nm位置與缺陷態尚未填補完全的Electromer對應光譜中波長573nm位置,前者是由於激發態與基態產生交互作用產生較短的綠光波段,後者則是由於材料的缺陷貢獻出較長且較寬的綠光波段。有機發光元件的變色機制部份,我們認為除了受到材料本身的化學特性影響外,元件中存在的缺陷態多寡亦是影響光譜變色的因素。

    We studied the photoluminance(PL) and electroluminance (EL) in solid films of a blue polyfluorene derivative based co-polymer. The study is aimed to understand the source of low emission band at 2.1-2.58 eV in the polyfluorene-based conjugated materials. We observed the current-voltage characteristics corresponds to the filling quantity of traps with various cathode device. Trap dependence of EL spectra is measured by applying a steady current to the device and the EL spectra reveals that the observed difference in intensity of long wavelength is due to not only the trap-filled excimer located at 481nm and 507nm but the trap-filled incompletely electromer located at 573nm. The excimer is an excited-state dimer with a dissociate ground state formed in the perfect molecular structure while the electromer is formed in the defected structure. In addition to chemical characteristics of the material, the emission of the organic light-emitting diode at around 2.3eV is attributed to the quantity of traps in the device.

    摘要 II Abstract III 誌謝 IV 圖目錄 III 表目錄 VIII 第一章 緒論 1 1-0 前言 1 1-1 有機發光元件之發展 2 1-2 有機發光元件的優點 5 1-4 有機發光元件常用材料 8 1-4-1聚芴高分子 8 1-5 研究動機與大綱 10 1-5-1 研究動機 10 1-5-2 研究大綱 10 第二章 發光元件與有機共軛高分子變色機制簡介 13 2-0 前言 13 2-1 有機發光元件基本結構 14 2-2 有機發光元件工作原理 15 2-3 有機電激發光原理 16 2-3 有機電激發光原理 16 2-3-1 電激發過程 17 2-3-2 光激發過程 19 2-4 影響元件放光因素 20 2-4-1 材料的聚集 20 2-4-1-1 Physical dimers 20 2-4-1-2 材料的凝聚 22 2-4-2 溶劑的極性影響 24 2-4-3 Ketonic效應 26 2-4-4 Excimer的產生機制與影響 29 2-4-5 Electromer的產生機制與影響 31 2-5 結論 33 第三章 元件製作與量測實驗儀器原理 35 3-1 元件製作流程 35 3-1-1 ITO玻璃基板處理 35 3-1-1-1 ITO玻璃基板圖案化 35 3-1-1-2 ITO表面修飾 37 3-1-2 發光元件製作 38 3-1-2-1 旋轉塗佈電洞注入層與發光層 38 3-1-2-2 熱蒸鍍陰極 39 3-2 元件光電特性量測 41 3-2-1 電壓電流特性圖 41 3-3 量測儀器原理 43 3-3-1 螢光光譜 43 3-3-1-1 Morse位能曲線 43 3-3-1-2 Franck–Condon principle 44 3-3-1-3 位置選擇螢光光譜 45 3-3-1-4 低溫下螢光光譜量測 46 3-3-1-5 吸收光譜與螢光光譜的對應 47 3-3-2 電場激發TSC (FI-TSC) 48 3-4 結論 49 第四章 聚芴高分子變色機制研究 50 4-0 前言 50 4-1 不同陰電極對元件注入的影響 51 4-2 探討藍光高分子光譜變色成因 58 4-2-1 定電流對不同陰極金屬的藍光高分子發光光譜變色快慢 58 4-2-2 螢光光譜產生綠光波段受退火環境的影響 68 4-2-3 單體激發態對應吸收光譜 69 4-2-4 不同激發光波長對螢光光譜相對強度的影響 71 4-2-5 調變分子間的距離改變單體激發態發光位置 72 4-2-6 分子排列的不同對單體激發態發光位置的影響 74 4-2-6-1 材料溶劑的影響 74 4-2-6-2 施加定電流對分子排列的影響 75 4-2-7 支鏈鬆弛對excimer形成的影響 77 4-2-8 材料缺陷對Electromer放光強度的影響 78 4-3 結論 83 第五章 總結與未來與展望 85 5-1 總結 85 5-2 未來展望 87 參考資料 89 自述 91

    [1] S. R. Forrest, Org. Electronics 2003, 4, 45.
    [2] J. Kido, M. Kimura, K. Nagai, Science 1995, 267, 1332.
    [3] A. Bernanose, Br. J. Appl. Phys. 1955, 6, S54.
    [4] H. Kallmann, M. Pope, Nature 1960, 186, 31.
    [5] M. Schadt, Digby F. Williams, J. Chem. Phys. 1969, 50, 4364.
    [6] R. H. Partridge, Polymer 1983, 24, 733.
    [7] S. Hayashi, H. Etoh, S. Saito, Jpn. J. Appl. Phys. 1986, 25, L773
    [8] C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett. 1987, 51, 913.
    [9] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature 1990, 347, 539.
    [10] D. Braun, A. J. Heeger, Appl. Phys. Lett. 1991, 58, 18, 1982.
    [11] R. C. Evans,P. Douglas, C. J. Winscom, Coord. Chem. Rev. 2006, 250, 2093.
    [12] J. K. Borchardt, Mater. Today 2004, 7, 25.
    [13] A. C. Grimsdale, K. Müllen, Adv Polym Sci 2008, 212, 1.
    [14] S. A. Chen, H. H. Lu, C. W. Huang, Adv Polym Sci 2008, 212, 49.
    [15] K. H. Weinfurtner, H. Fujikawa, S. Tokito, Ya. Taga, Appl. Phys. Lett. 2000, 76, 2502.
    [16] H. H. Lu, C. Y. Liu, T. H. Jen, J. L. Liao, H. E. Tseng, C. W. Huang, M. C. Hung, S. A. Chen, Macromolecules 2005, 38, 10829.
    [17] U. Scherf, K. Miillen, Chem., Rapid Commun. 1991, 12, 489.
    [18] U. Scherf, K. Miillen, Makromol. 1992, 25, 3546.
    [19] R. Eisberg, R. Resnick, R. Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei, and Particles, 2nd ed, Wiley, New York 1985, p294.
    [20] R. Shankar, Principles of Quantum Mechanics, 2nd ed, Plenum Press, New York 1994, p406.
    [21] M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Nature 1998, 395, 151.
    [22] M. Segal, M. A. Baldo, R. J. Holmes, S. R. Forrest, Z. G. Soos , Phys. Rev. B 2003, 68, 075211.
    [23] J. Kalinowski, W. Stampor, M. Cocchi, D. Virgili, V. Fattori, P. Di Marco, Phys. Rev. B 2002, 66, 235321.
    [24] M. Pope, C. E. Swenberg, Electronic processes in Organic Crystals and Polymers, 2nd ed, Oxford University Press, New York 1999, p39
    [25] U. Lemmer, S. Heun, R.F. Mahrt, U. Scherf, M. Hopmeier, U. Siegner, E.O. Go¨bel, K. Mu¨llen, H. Ba¨ssler, Chem. Phys. Lett. 1995, 240, 373.
    [26] J. Cornil, A. J. Heeger, J. L. Bredas, Chem. Phys. Lett. 1997, 272,463.
    [27] L. Romaner, A. Pogantsch, P. Scandiucci de Freitas, U. Scherf, M. Gaal, E. Zojer, E.J.W. List, Adv. Funct. Mater. 2003, 13, 597.
    [28] J. Grüner, H.F. Wittmann, P.J. Hamer, R.H. Friend, J. Huber, U. Scherf, K. Müllen, S.C. Moratti, A.B. Holmes, Synth.Metals 1994, 67, 181.
    [29] D. A. Skoog, F. J. Holler, T. A. Nieman, Principles of Instrumental Analysis, 5nd ed, Saunders College Pub., Philadelphia 1985, p329.
    [30] U. Scherf, E. J. W. List, Adv. Mater. 2002, 14, 477.
    [31] U. Scherf, E. J. W. List, Adv. Mater. 2002, 14, 374.
    [32] E. Zojer, A. Pogantsch, E. Hennebicq, D. Beljonne, J. L. Brédas, P. Scandiucci de Freitas, U. Scherf, J. Chem. Phys. 2002, 117, 6794.
    [33] M. Pope, C. E. Swenberg, Electronic processes in Organic Crystals and Polymers, 2nd ed, Oxford University Press, New York 1999, p49
    [34] J. Kalinowski, G. Giro, M. Cocchi, V. Fattori, R. Zamboni, Chemical physics 2002, 277, 387.
    [35] M. Pope, C. E. Swenberg, Electronic processes in Organic Crystals and Polymers, 2nd ed, Oxford University Press, New York 1999, p384.
    [36] D. A. Skoog, F. J. Holler, T. A. Nieman, Principles of Instrumental Analysis, 5nd ed, p355.
    [37]M. Pope, C. E. Swenberg, Electronic processes in Organic Crystals and Polymers, 2nd ed, Oxford University Press, New York 1999, p832.
    [38] H. Bassler, B. Schweitzer, Acc. Chem. Res. 1999, 32, 173.
    [39] M. Pope, C. E. Swenberg, Electronic processes in Organic Crystals and Polymers, 2nd ed, Oxford University Press, New York 1999, p24.
    [40] H. Bassler, B. Schweitzer, Acc. Chem. Res. 1999, 32, 173.

    無法下載圖示 校內:2015-08-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE