簡易檢索 / 詳目顯示

研究生: 鄧暐翰
Deng, Wei-Han
論文名稱: CD44 在 NRK-49F 細胞中膠原纖維重塑與基質降解抑制中的功能角色
Functional roles of CD44 in remodeling of collagen fibril and inhibition of matrix degradation in NRK-49F cells
指導教授: 湯銘哲
Tang, Ming-Jer
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 60
中文關鍵詞: 纖維化CD44成纖維細胞ECM 重塑玻尿酸
外文關鍵詞: Fibrosis, CD44, fibroblast, ECM remodeling, hyaluronan acid
相關次數: 點閱:32下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Abstract 2 中文摘要 4 Content 6 Introduction 9 Materials & Methods 19 Results 23 Discussion 32 References 35 Figures 45

    1. Kovesdy CP. Epidemiology of chronic kidney disease: an update 2022. Kidney Int Suppl (2011). 2022;12(1):7-11. doi:10.1016/j.kisu.2021.11.003
    2. Gewin L, Zent R, Pozzi A. Progression of chronic kidney disease: too much cellular talk causes damage. Kidney Int. 2017;91(3):552-560. doi:10.1016/j.kint.2016.08.025
    3. Li L, Fu H, Liu Y. The fibrogenic niche in kidney fibrosis: components and mechanisms. Nat Rev Nephrol. 2022;18(9):545-557. doi:10.1038/s41581-022-00590-z
    4. Shinde AV, Humeres C, Frangogiannis NG. The role of α-smooth muscle actin in fibroblast-mediated matrix contraction and remodeling. Biochim Biophys Acta Mol Basis Dis. 2017;1863(1):298-309. doi:10.1016/j.bbadis.2016.11.006
    5. Buchtler S, Grill A, Hofmarksrichter S, et al. Cellular Origin and Functional Relevance of Collagen I Production in the Kidney. J Am Soc Nephrol. 2018;29(7):1859-1873. doi:10.1681/ASN.2018020138
    6. Klingberg F, Chau G, Walraven M, et al. The fibronectin ED-A domain enhances recruitment of latent TGF-β-binding protein-1 to the fibroblast matrix. J Cell Sci. 2018;131(5):jcs201293. Published 2018 Mar 1. doi:10.1242/jcs.201293
    7. Kiani C, Chen L, Wu YJ, Yee AJ, Yang BB. Structure and function of aggrecan. Cell Res. 2002;12(1):19-32. doi:10.1038/sj.cr.7290106
    8. Evanko SP, Tammi MI, Tammi RH, Wight TN. Hyaluronan-dependent pericellular matrix. Adv Drug Deliv Rev. 2007;59(13):1351-1365. doi:10.1016/j.addr.2007.08.008
    9. Albeiroti S, Soroosh A, de la Motte CA. Hyaluronan's Role in Fibrosis: A Pathogenic Factor or a Passive Player?. Biomed Res Int. 2015;2015:790203. doi:10.1155/2015/790203
    10. Kaul A, Singampalli KL, Parikh UM, Yu L, Keswani SG, Wang X. Hyaluronan, a double-edged sword in kidney diseases. Pediatr Nephrol. 2022;37(4):735-744. doi:10.1007/s00467-021-05113-9
    11. Fu H, Tian Y, Zhou L, et al. Tenascin-C Is a Major Component of the Fibrogenic Niche in Kidney Fibrosis. J Am Soc Nephrol. 2017;28(3):785-801. doi:10.1681/ASN.2016020165
    12. Mael-Ainin M, Abed A, Conway SJ, Dussaule JC, Chatziantoniou C. Inhibition of periostin expression protects against the development of renal inflammation and fibrosis. J Am Soc Nephrol. 2014;25(8):1724-1736. doi:10.1681/ASN.2013060664
    13. Yin Q, Liu H. Connective Tissue Growth Factor and Renal Fibrosis. Adv Exp Med Biol. 2019;1165:365-380. doi:10.1007/978-981-13-8871-2_17
    14. Humphreys BD, Lin SL, Kobayashi A, et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol. 2010;176(1):85-97. doi:10.2353/ajpath.2010.090517.
    15. Yamashita N, Kusaba T, Nakata T, et al. Intratubular epithelial-mesenchymal transition and tubular atrophy after kidney injury in mice. Am J Physiol Renal Physiol. 2020;319(4):F579-F591. doi:10.1152/ajprenal.00108.2020
    16. Chen WC, Lin HH, Tang MJ. Regulation of proximal tubular cell differentiation and proliferation in primary culture by matrix stiffness and ECM components. Am J Physiol Renal Physiol. 2014;307(6):F695-F707. doi:10.1152/ajprenal.00684.2013
    17. Wetzel MD, Stanley K, Wang WW, et al. Selective inhibition of arginase-2 in endothelial cells but not proximal tubules reduces renal fibrosis. JCI Insight. 2020;5(19):e142187. Published 2020 Oct 2. doi:10.1172/jci.insight.142187
    18. Wu Q, Sun S, Wei L, et al. Twist1 regulates macrophage plasticity to promote renal fibrosis through galectin-3. Cell Mol Life Sci. 2022;79(3):137. Published 2022 Feb 19. doi:10.1007/s00018-022-04137-0
    19. Knutson JR, Iida J, Fields GB, McCarthy JB. CD44/chondroitin sulfate proteoglycan and alpha 2 beta 1 integrin mediate human melanoma cell migration on type IV collagen and invasion of basement membranes. Mol Biol Cell. 1996;7(3):383-396. doi:10.1091/mbc.7.3.383
    20. Weber GF, Ashkar S, Glimcher MJ, Cantor H. Receptor-ligand interaction between CD44 and osteopontin (Eta-1). Science. 1996;271(5248):509-512. doi:10.1126/science.271.5248.509
    21. Zöller M. CD44, Hyaluronan, the Hematopoietic Stem Cell, and Leukemia-Initiating Cells. Front Immunol. 2015;6:235. Published 2015 May 26. doi:10.3389/fimmu.2015.00235
    22. Zöller M. CD44: can a cancer-initiating cell profit from an abundantly expressed molecule?. Nat Rev Cancer. 2011;11(4):254-267. doi:10.1038/nrc3023
    23. Chen C, Zhao S, Karnad A, Freeman JW. The biology and role of CD44 in cancer progression: therapeutic implications. J Hematol Oncol. 2018;11(1):64. Published 2018 May 10. doi:10.1186/s13045-018-0605-5
    24. Bourguignon LY, Zhu H, Shao L, Chen YW. CD44 interaction with c-Src kinase promotes cortactin-mediated cytoskeleton function and hyaluronic acid-dependent ovarian tumor cell migration. J Biol Chem. 2001;276(10):7327-7336. doi:10.1074/jbc.M006498200
    25. Toole BP. Hyaluronan-CD44 Interactions in Cancer: Paradoxes and Possibilities. Clin Cancer Res. 2009;15(24):7462-7468. doi:10.1158/1078-0432.CCR-09-0479
    26. Nam K, Oh S, Lee KM, Yoo SA, Shin I. CD44 regulates cell proliferation, migration, and invasion via modulation of c-Src transcription in human breast cancer cells. Cell Signal. 2015;27(9):1882-1894. doi:10.1016/j.cellsig.2015.05.002
    27. Ma JW, Wang X, Chang L, et al. CD44 collaborates with ERBB2 mediate radiation resistance via p38 phosphorylation and DNA homologous recombination pathway in prostate cancer. Exp Cell Res. 2018;370(1):58-67. doi:10.1016/j.yexcr.2018.06.006
    28. Perez A, Neskey DM, Wen J, et al. CD44 interacts with EGFR and promotes head and neck squamous cell carcinoma initiation and progression. Oral Oncol. 2013;49(4):306-313. doi:10.1016/j.oraloncology.2012.11.009
    29. Porsch H, Mehić M, Olofsson B, Heldin P, Heldin CH. Platelet-derived growth factor β-receptor, transforming growth factor β type I receptor, and CD44 protein modulate each other's signaling and stability. J Biol Chem. 2014;289(28):19747-19757. doi:10.1074/jbc.M114.547273
    30. Bourguignon LY, Singleton PA, Zhu H, Zhou B. Hyaluronan promotes signaling interaction between CD44 and the transforming growth factor beta receptor I in metastatic breast tumor cells. J Biol Chem. 2002;277(42):39703-39712. doi:10.1074/jbc.M204320200
    31. Joosten SPJ, Spaargaren M, Clevers H, Pals ST. Hepatocyte growth factor/MET and CD44 in colorectal cancer: partners in tumorigenesis and therapy resistance. Biochim Biophys Acta Rev Cancer. 2020;1874(2):188437. doi:10.1016/j.bbcan.2020.188437
    32. Singleton PA, Bourguignon LY. CD44 interaction with ankyrin and IP3 receptor in lipid rafts promotes hyaluronan-mediated Ca2+ signaling leading to nitric oxide production and endothelial cell adhesion and proliferation. Exp Cell Res. 2004;295(1):102-118. doi:10.1016/j.yexcr.2003.12.025
    33. Bourguignon LY. Hyaluronan-mediated CD44 activation of RhoGTPase signaling and cytoskeleton function promotes tumor progression. Semin Cancer Biol. 2008;18(4):251-259. doi:10.1016/j.semcancer.2008.03.007
    34. Hall A. Rho GTPases and the actin cytoskeleton. Science. 1998;279(5350):509-514. doi:10.1126/science.279.5350.509
    35. Humphrey JD, Dufresne ER, Schwartz MA. Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol. 2014;15(12):802-812. doi:10.1038/nrm3896
    36. Winkler J, Abisoye-Ogunniyan A, Metcalf KJ, Werb Z. Concepts of extracellular matrix remodelling in tumour progression and metastasis. Nat Commun. 2020;11(1):5120. Published 2020 Oct 9. doi:10.1038/s41467-020-18794-x
    37. Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014;15(12):786-801. doi:10.1038/nrm3904
    38. Kanchanawong P, Calderwood DA. Organization, dynamics and mechanoregulation of integrin-mediated cell-ECM adhesions. Nat Rev Mol Cell Biol. 2023;24(2):142-161. doi:10.1038/s41580-022-00531-5
    39. Matsushita K, Toyoda T, Akane H, Morikawa T, Ogawa K. Role of CD44 expressed in renal tubules during maladaptive repair in renal fibrogenesis in an allopurinol-induced rat model of chronic kidney disease. J Appl Toxicol. 2024;44(3):455-469. doi:10.1002/jat.4554
    40. Schachtner H, Calaminus SD, Thomas SG, Machesky LM. Podosomes in adhesion, migration, mechanosensing and matrix remodeling. Cytoskeleton (Hoboken). 2013;70(10):572-589. doi:10.1002/cm.21119
    41. Linder S, Nelson D, Weiss M, Aepfelbacher M. Wiskott-Aldrich syndrome protein regulates podosomes in primary human macrophages. Proc Natl Acad Sci U S A. 1999;96(17):9648-9653. doi:10.1073/pnas.96.17.9648
    42. Tsuboi S. Requirement for a complex of Wiskott-Aldrich syndrome protein (WASP) with WASP interacting protein in podosome formation in macrophages. J Immunol. 2007;178(5):2987-2995. doi:10.4049/jimmunol.178.5.2987
    43. Bourguignon LY, Peyrollier K, Gilad E, Brightman A. Hyaluronan-CD44 interaction with neural Wiskott-Aldrich syndrome protein (N-WASP) promotes actin polymerization and ErbB2 activation leading to beta-catenin nuclear translocation, transcriptional up-regulation, and cell migration in ovarian tumor cells. J Biol Chem. 2007;282(2):1265-1280. doi:10.1074/jbc.M604672200
    44. Ouhtit A, Thouta R, Zayed H, et al. CD44 mediates stem cell mobilization to damaged lung via its novel transcriptional targets, Cortactin and Survivin. Int J Med Sci. 2020;17(1):103-111. Published 2020 Jan 1. doi:10.7150/ijms.33125
    45. Bourguignon LY, Zhu H, Shao L, Chen YW. CD44 interaction with c-Src kinase promotes cortactin-mediated cytoskeleton function and hyaluronic acid-dependent ovarian tumor cell migration. J Biol Chem. 2001;276(10):7327-7336. doi:10.1074/jbc.M006498200
    46. Zhao P, Xu Y, Wei Y, et al. The CD44s splice isoform is a central mediator for invadopodia activity. J Cell Sci. 2016;129(7):1355-1365. doi:10.1242/jcs.171959
    47. Yu Q, Stamenkovic I. Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev. 1999;13(1):35-48. doi:10.1101/gad.13.1.35
    48. Cheung BCH, Chen X, Davis HJ, et al. CD44 and β1-integrin are both engaged in cell traction force generation in hyaluronic acid-rich extracellular matrices. Preprint. bioRxiv. 2023;2023.10.24.563860. Published 2023 Oct 28. doi:10.1101/2023.10.24.563860
    49. Li S, Li C, Zhang Y, et al. Targeting Mechanics-Induced Fibroblast Activation through CD44-RhoA-YAP Pathway Ameliorates Crystalline Silica-Induced Silicosis. Theranostics. 2019;9(17):4993-5008. Published 2019 Jul 9. doi:10.7150/thno.35665
    50. Wang Y, Mack JA, Maytin EV. CD44 inhibits α-SMA gene expression via a novel G-actin/MRTF-mediated pathway that intersects with TGFβR/p38MAPK signaling in murine skin fibroblasts. J Biol Chem. 2019;294(34):12779-12794. doi:10.1074/jbc.RA119.007834
    51. Ito T, Williams JD, Fraser D, Phillips AO. Hyaluronan attenuates transforming growth factor-beta1-mediated signaling in renal proximal tubular epithelial cells. Am J Pathol. 2004;164(6):1979-1988. doi:10.1016/s0002-9440(10)63758-3
    52. Suleiman M, Abdulrahman N, Yalcin H, Mraiche F. The role of CD44, hyaluronan and NHE1 in cardiac remodeling. Life Sci. 2018;209:197-201. doi:10.1016/j.lfs.2018.08.009
    53. Chang SH, Yeh YH, Lee JL, Hsu YJ, Kuo CT, Chen WJ. Transforming growth factor-β-mediated CD44/STAT3 signaling contributes to the development of atrial fibrosis and fibrillation. Basic Res Cardiol. 2017;112(5):58. Published 2017 Sep 4. doi:10.1007/s00395-017-0647-9
    54. Li Y, Jiang D, Liang J, et al. Severe lung fibrosis requires an invasive fibroblast phenotype regulated by hyaluronan and CD44. J Exp Med. 2011;208(7):1459-1471. doi:10.1084/jem.20102510
    55. Akin D, Ozmen S, Yilmaz ME. Hyaluronic Acid as a New Biomarker to Differentiate Acute Kidney Injury From Chronic Kidney Disease. Iran J Kidney Dis. 2017;11(6):409-413.
    56. Han DH, Song HK, Lee SY, et al. Upregulation of hyaluronan and its binding receptors in an experimental model of chronic cyclosporine nephropathy. Nephrology (Carlton). 2010;15(2):216-224. doi:10.1111/j.1440-1797.2009.01167.x
    57. Colombaro V, Jadot I, Declèves AE, et al. Lack of hyaluronidases exacerbates renal post-ischemic injury, inflammation, and fibrosis. Kidney Int. 2015;88(1):61-71. doi:10.1038/ki.2015.53
    58. Chen S, Zhang M, Li J, et al. β-catenin-controlled tubular cell-derived exosomes play a key role in fibroblast activation via the OPN-CD44 axis. J Extracell Vesicles. 2022;11(3):e12203. doi:10.1002/jev2.12203
    59. Yeh YC, Ling JY, Chen WC, Lin HH, Tang MJ. Mechanotransduction of matrix stiffness in regulation of focal adhesion size and number: reciprocal regulation of caveolin-1 and β1 integrin. Sci Rep. 2017;7(1):15008. Published 2017 Nov 8. doi:10.1038/s41598-017-14932-6
    60. Tsuneki M, Madri JA. CD44 Influences Fibroblast Behaviors Via Modulation of Cell-Cell and Cell-Matrix Interactions, Affecting Survivin and Hippo Pathways. J Cell Physiol. 2016;231(3):731-743. doi:10.1002/jcp.25123
    61. Coelho NM, Wang A, McCulloch CA. Discoidin domain receptor 1 interactions with myosin motors contribute to collagen remodeling and tissue fibrosis. Biochim Biophys Acta Mol Cell Res. 2019;1866(11):118510. doi:10.1016/j.bbamcr.2019.07.005
    62. Wang Z, Li G, Li M, et al. Periostin contributes to the adventitial remodeling of atherosclerosis by activating adventitial fibroblasts. Atheroscler Plus. 2022;50:57-64. Published 2022 Oct 19. doi:10.1016/j.athplu.2022.10.001
    63. Murrell M, Oakes PW, Lenz M, Gardel ML. Forcing cells into shape: the mechanics of actomyosin contractility. Nat Rev Mol Cell Biol. 2015;16(8):486-498. doi:10.1038/nrm4012
    64. Bouvard D, Pouwels J, De Franceschi N, Ivaska J. Integrin inactivators: balancing cellular functions in vitro and in vivo. Nat Rev Mol Cell Biol. 2013;14(7):430-442. doi:10.1038/nrm3599
    65. Gao Q, Sun Z, Fang D. Integrins in human hepatocellular carcinoma tumorigenesis and therapy. Chin Med J (Engl). 2023;136(3):253-268. Published 2023 Feb 5. doi:10.1097/CM9.0000000000002459
    66. Wang ST, Neo BH, Betts RJ. Glycosaminoglycans: Sweet as Sugar Targets for Topical Skin Anti-Aging. Clin Cosmet Investig Dermatol. 2021;14:1227-1246. Published 2021 Sep 14. doi:10.2147/CCID.S328671
    67. Anderson S, DiCesare L, Tan I, Leung T, SundarRaj N. Rho-mediated assembly of stress fibers is differentially regulated in corneal fibroblasts and myofibroblasts. Exp Cell Res. 2004;298(2):574-583. doi:10.1016/j.yexcr.2004.05.005
    68. Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol. 2009;10(11):778-790. doi:10.1038/nrm2786
    69. Zhang Y, Xia H, Ge X, et al. CD44 acts through RhoA to regulate YAP signaling. Cell Signal. 2014;26(11):2504-2513. doi:10.1016/j.cellsig.2014.07.031
    70. DeOre BJ, Partyka PP, Fan F, Galie PA. CD44 mediates shear stress mechanotransduction in an in vitro blood-brain barrier model through small GTPases RhoA and Rac1. FASEB J. 2022;36(5):e22278. doi:10.1096/fj.202100822RR
    71. Yamagata M, Saga S, Kato M, Bernfield M, Kimata K. Selective distributions of proteoglycans and their ligands in pericellular matrix of cultured fibroblasts. Implications for their roles in cell-substratum adhesion. J Cell Sci. 1993;106 ( Pt 1):55-65. doi:10.1242/jcs.106.1.55
    72. Wu YJ, La Pierre DP, Wu J, Yee AJ, Yang BB. The interaction of versican with its binding partners. Cell Res. 2005;15(7):483-494. doi:10.1038/sj.cr.7290318
    73. Chen D, Smith LR, Khandekar G, et al. Distinct effects of different matrix proteoglycans on collagen fibrillogenesis and cell-mediated collagen reorganization. Sci Rep. 2020;10(1):19065. Published 2020 Nov 4. doi:10.1038/s41598-020-76107-0
    74. Hattori N, Carrino DA, Lauer ME, et al. Pericellular versican regulates the fibroblast-myofibroblast transition: a role for ADAMTS5 protease-mediated proteolysis. J Biol Chem. 2011;286(39):34298-34310. doi:10.1074/jbc.M111.254938
    75. Bukong TN, Maurice SB, Chahal B, Schaeffer DF, Winwood PJ. Versican: a novel modulator of hepatic fibrosis. Lab Invest. 2016;96(3):361-374. doi:10.1038/labinvest.2015.152
    76. El-Haibi CP, Bell GW, Zhang J, et al. Critical role for lysyl oxidase in mesenchymal stem cell-driven breast cancer malignancy. Proc Natl Acad Sci U S A. 2012;109(43):17460-17465. doi:10.1073/pnas.1206653109

    無法下載圖示 校內:2029-08-06公開
    校外:2029-08-06公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE