| 研究生: |
游旻瑾 Yu, Min-Chin |
|---|---|
| 論文名稱: |
具鐵電閘極絕緣層應用於高效能可撓式氧化銦鎢鋅薄膜電晶體技術之研究 High Performance Flexible α-In-W-Zn-O Thin Film Transistor With The Ferroelectric Gate Insulator |
| 指導教授: |
黃吉川
Huang, Chi-Chuan 劉柏村 Liu, Po-Tsun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 非晶金屬氧化物 、薄膜電晶體 、氧化銦鎵鋅 、氧化銦鋅鎢 、複合閘極絕緣層 、超臨界流體製程 、鐵電 、可撓曲電子 |
| 外文關鍵詞: | TAOS, TFT, IGZO, IWZO, multi-layer gate stack, super fluid process, ferroelectric, flexible electronics |
| 相關次數: | 點閱:93 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著半導體蓬勃的發展,元件已經與我們的生活息息相關,對於元件的研究也日益多元,其中,應用於薄膜電晶體上的透明金屬氧化物被給予莫大的關注,其在顯示技術上的優勢已使得其逐漸取代了氫化非晶矽(a-Si:H)。非晶金屬氧化物薄膜電晶體具有高載子遷移率(mobility)、高透明度、低製程溫度,高均勻性等優異特性,而在這之中尤以擁有優異的元件電流驅動能力、均勻性、及薄膜穩定性的非晶態氧化銦鎵鋅(Amorphous InGaZnO: a-IGZO)最具潛力。然而,在未來科技領域中,應用薄膜電晶體於大尺寸高解析度的顯示器、有機發光元件、量子點顯示器及軟性電子元件的相關研究快速發展,使得我們有更多針對薄膜電晶體的元件研究與開發的需要,本論文將著重於應用撓曲基板上的新穎低溫金屬氧化物高效能非晶態氧化銦鋅鎢半導體元件的開發,以及應用高介電絕緣層薄膜做為閘極絕緣層,特別是應用具有類鐵電特性薄膜做為低溫閘極絕緣層的相關研究。本論文特色為:(1) 摻雜鎢元素由與其和氧原子間的高鍵解離能(bond-dissociation energy)降低薄膜中氧空缺數量並且提升元件穩定性;(2) 由金屬的S軌域與氧原子形成導電帶,使得元件通道層在低溫環境載子濃度提高使得其可以應用與撓曲基板;(3) 特別使用低溫製程的高介電係數材料製做出具有類鐵電特性的閘極絕緣層以期望獲得更好的電性表現;(4) 特別應用超臨界流體製程低溫處理薄膜電晶體減少通道層及閘極氧化層中的缺陷,提升可撓曲基板上的元件性能表現。本文不僅通過降低製程熱預算(thermal budget),在可撓曲的聚醯亞胺(Polyimide;PI)基板上完成元件,並且達成優秀的元件電性表現。
我們在元件的開發中,通過改變基本通道製程條件觀察應用複合閘極絕緣層的元件的電性變化,還探討閘極絕緣層實施沉積後退火的影響,以及對元件施予不同條件超臨界流體製程,其載子遷移率可大於70 cm2/V-s 、次臨界擺幅可小於60 mV/dec、開關比可大於106次方以上的可撓式元件.,以及通過應用高介電絕緣層將元件操作電壓降為2 V以內。此外,透過進行電容量測,可更精確的萃取出混合製程之複合閘極絕緣層的介電常數(dielectric constant)。另外還在可靠度測試方面,進行了閘極偏壓測試研究(gate bias stress)以及元件的撓曲測試。
最後,我們通過使用新穎的金屬氧化物半導體氧化銦鋅鎢薄膜做為通道層,結合低溫製程高介電常數的複合高介電系數材料設計製做出類鐵電閘極絕緣層以及透過特殊超臨界流體製程處理,克服低溫製程的困難,完成元件的開發,並且成功在透明的PI基板上,改善元件載子遷移率和次臨界擺幅,展現應用氧化銦鋅鎢電晶體與可撓曲電子的龐大市場潛力。
With the flourishing development of semiconductor science and technology, our lives are more and more relative to semiconductor. Therefore, the development of devices is more diversified. Transparent amorphous oxide semiconductors (TAOS) used on thin film transistors (TFTs) are given highly concerns, and also, TAOS have gradually taken the place of the material, a-Si:H in the technology of displays.
TAOS are equipped with superior characteristics, such as high mobility, high transmittance, low-temperature fabrication process, uniformity and so on. Among TAOS materials, amorphous InGaZnO: a-IGZO is the most potential material nowadays, because of its excellent drive current ability, uniformity, and film stability. However, in the future field of technology, the rapid evolution of the technology application like high-revolution large scale display, organic light-emitting diode, quantum-dot display, flexible electronics and etc. makes the high demand of further research, development and human needs of thin film transistors.
In this study, the development of the application of the innovative material, transparent amorphous indium tungsten zinc oxide (a-IWZO) in the thin film transistor on the flexible substrates fabrication and the development of the insulator layer of high dielectric constant, especially the film of ferroelectric characteristics used as the gate insulator of low temperature process have been both given a deep research. The characteristics separating into four points of this study are listed below: (1) The TAOS material doped with tungsten letting it have high bond-dissociation energy which can decrease the number of the oxygen vacancies in the film and upgrade the stability of the film; (2) The spherical isotropic ns (n>4) orbitals of the metallic cations overlap and form the conduction band minimum. This situation provides high concentration of carriers in the active layer using TAOS materials and makes the devices applied in the flexible electronics more easily; (3) Especially, the material of high dielectric constant with the low temperature process to be the gate insulator with ferroelectric characteristics is used to expect to have better electrical performance of the device; (4) The use of super fluid system is a low temperature process in that it provides a suitable process environment for the flexible substrate with rather low heat resistance, and the super fluid process treatment decreases the defects in the active layer and gate oxide insulator in order to upgrade the electrical performance of the device on the flexible substrate. This study shows that the thermal budget is decreased in that it leads to complete the development of the devices fabricated on the polyimide (PI) substrate and achieve excellent electrical characteristics.
In detail, during the development of the device, the thin film transistor, the difference of electrical performance of the devices with the multi-layer gate stack was investigated through changing the fabrication process parameters. Additionally, the device with the gate insulator stack of various post deposition annealing (PDA) conditions and the super fluid process treatment of various process parameters are investigated as well.
The optimized a-IWZO TFT on the flexible substrate obtained the outstanding electrical characteristics, μFE higher than 70 cm2/V-s , sub-threshold swing (S.S.) lower than 60 mV/dec., , Ion/Ioff ratio higher than 106, a small threshold voltage near 0V, and the operating voltage can be reduced in 2 V through using the gate insulator of high dielectric constant. Besides, by measuring the capacitor, the dielectric constant of the gate stack with hybrid process can be extracted correctly. Moreover, to test the reliability of the device, the gate bias stress measurement and the bending test are taken into investigation.
To summary, the flexible a-IWZO transistor with the innovative TAOS material, IWZO as the active layer in collocation with the low temperature process multi-layer high-dielectric-constant gate insulator acting ferroelectric phenomenon and in combination with low temperature process, super fluid system treatment in order to come through the difficulty while using low temperature process accomplished. In this research, the device fabricated on the colorless PI substrate achieved successfully and the mobility and S.S. of the device are improved showing the large potential in the application of the a-IWZO TFTs in the field of flexible electronics.
Reference
[1] T. Kamiya, K. Nomura, and H. Hosono, “Present status of amorphous In–Ga–Zn–O thin-film transistors,” Science and Technology of Advanced Materials, vol. 11, p.044305, 2010.
[2] T. Kamiya, and H. Hosono, “Material characteristics and applications of transparent amorphous oxide semiconductors,” NPG Asia Materials, vol. 2, pp. 15-22, 2010.
[3] M. Katayama, “TFT-LCD technology,” Thin Solid Films, vol. 341, pp. 140-147, 3/12/ 1999.
[4] Y. Kuo, “Amorphous silicon thin film transistors,” Thin film transistors, vol. 1: Springer US, 2004, ch. 1.
[5] K. Sera, F. Okumura, H. Uchida, S. Itoh, S. Kaneko, and K. Hotta, “High-performance TFTs fabricated by XeCl excimer laser annealing of hydrogenated amorphous-silicon film,” Electron Devices, IEEE Transactions on, vol. 36, pp. 2868-2872, 1989.
[6] S. Higashi, D. Abe, Y. Hiroshima, K. Miyashita, T. Kawamura, S. Inoue, and T. Shimoda, “High-Quality SiO2/Si Interface Formation and Its Application to Fabrication of Low-Temperature-Processed Polycrystalline Si Thin-Film Transistor,” Jpn. J. Appl. Phys., vol. 41, pp. 3646-3650, 2002.
[7] E. N. Cho, K. Jung Han, C. E. Kim, P. Moon, and I. Yun, “Analysis of Bias Stress Instability in Amorphous InGaZnO Thin-Film Transistors,” Device and Materials Reliability, IEEE Transactions on, vol. 11, pp. 112-117, 2011.
[8] P. T. Liu, C. H. Chang and C. S. Fuh, “Mobility enhancement for high stability tungsten-doped indium-zinc oxide thin film transistors with a channel passivation layer,” RSC Adv., vol. 6, pp. 106374, 2016.
[9] E. Chong, Y. S Chun and S. Y. Lee, “Role of silicon in silicon indium zinc oxide thin film transistor,” Appl. Phys. Lett., vol. 97, pp. 102102, 2010.
[10] C. J. Kim, S. Kim, J. H. Lee, J. S. Park, S. Kim, J. Park, E. Lee, J. Lee, Y. Park, J. H. Kim, S. T. Shin and U. I. Chung, “Instability of amorphous hafnium indium zinc oxide thin film transistors under negative bias illumination stress,” Appl. Phys. Lett., vol. 95, pp. 252103, 2009.
[11] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, pp. 488, 2004.
[12] T. Kamiya, K. Nomura and H. Hosono, “Present status of amorphous In–Ga–Zn–O thin-film transistors,” Sci. Technol. Adv. Mater., vol. 11, pp. 044305, 2010.
[13] K. Nomura, T. Kamiya and H. Hosono, “Stability and high-frequency operation of amorphous In-Ga-Zn-O thin-film transistors with various passivation layers,” Thin Solid Films, 2012, 520, 3778.
[14] K. Nomura, T. Kamiya, H. Ohta, T. Uruga, M. Hirano, and H. Hosono, “Local coordination structure and electronic structure of the large electron mobility amorphous oxide semiconductor In-Ga-Zn-O: Experiment and ab initio calculations,” Phys. Rev. B, vol. 75, p. 035212, 2007.
[15] H. Hosono, “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application,” J. Non-Cryst.Solids, vol. 352, pp. 851-858, Apr. 2006.
[16] “材料世界網 Nikkei Electronics,” https://www.materialsnet.com.tw/, Aug, 2007.
[17] H. Li, M. Qu, and Q. Zhang, “Influence of tungsten doping on the performance of indium–zinc–oxide thin-film transistors,” IEEE Electron Device Lett., vol. 34, pp. 1268-1270, 2013.
[18] H. W. Park, K. Park, J. Y. Kwon, D. Choi, and K. B. Chung, “Effect of active layer thickness on device performance of tungsten-doped InZnO thin-film transistor,” IEEE Trans. Electron Devices., vol. 64, pp. 159-163, 2017.
[19] Z. Yang, T. Meng, Q. Zhang, and H. P. D. Shieh, “Stability of amorphous indium–tungsten oxide thin-film transistors under various wavelength light illumination,” IEEE Electron Device Lett., vol. 37, pp. 437-440, 2016.
[20] T. Kizu, N. Mitoma, M. Miyanaga, H. Awata, T. Nabatame, and K. Tsukagoshi, “Codoping of zinc and tungsten for practical high-performance amorphous indium-based oxide thin film transistors,” J. Appl. Phys., vol. 118, pp. 125702, 2015.
[21] D. B. Ruan, P. T. Liu, Y. C. Chiu, P. Y. Kuo, M. C. Yu, K. J. Gan, T. C. Chien, and Simon M. Sze, “Mobility enhancement for high stability tungsten doped indium zinc oxide thin film transistors with a channel passivation layer,” RSC Adv., vol. 8, pp. 6925-6930, 2018.
[22] Y. Shao, X. Xiao, X. He, W. Deng, and S. Zhang, “Low-voltage a-InGaZnO thin-film transistors with anodized thin HfO2 gate dielectric,” IEEE Electron Device Lett., vol. 36, pp. 573-575, 2015.
[23] Y. Gao, J. Zhang, and X. Li, “Solution-processed zirconium oxide gate insulators for top gate and low operating voltage thin-film transistor,” J. Disp. Technol., vol. 11, pp. 764-767, 2015.
[24] J. B. Kim, C. Fuentes-Hernandez, W. J. Potscavage, X. H. Zhang, and B. Kippelen, “Low-voltage InGaZnO thin-film transistors with Al2O3 gate insulator grown by atomic layer deposition,” Appl. Phys. Lett., vol. 94, pp. 142107, 2009.
[25] J. F. Scott , “Ferroelectric Memories,” Springer-Verlag , vol. 3, pp. 79-94, 2000.
[26] S. Desgreniers , K. Lagarec, “High-density ZrO2 and HfO2:Crystalline structures and equations of state,” Phys. Rev. B, vol. 59 , pp. 8467, 1999.
[27] M. H. Park, Y. H. Lee, H. J. Kim, Y. J. Kim, T. Moon, K. Do Kim, J. Müller, A. Kersch, U. Schroeder, T. Mikolajick, and C. S. Hwang, “Ferroelectricity and Antiferroelectricity of Doped Thin HfO2-Based Films,” Adv. Mater., vol. 27, pp. 1811-1831, 2015.
[28] D. Mathieu, B. Julien, L. Marc, and T. H. H. Louis, “Modelling of hysteretic behavior of piezoceramic materials under electrical loading,” Applied Physics Letters, vol. 103, pp. 1729031-1729034, 2013.
[29] L. Zhu, “Exploring Strategies for High Dielectric Constant and Low Loss Polymer Dielectrics,” J. Phys. Chem. Lett., vol. 5, pp. 3677−3687, 2014.
[30] T. S. Böscke , J. Müller , D. Bräuhaus , U. Schröder , U. Böttger, “Ferroelectricity in hafnium oxide thin films,” Appl. Phys. Lett., vol. 99 , pp. 102903, 2011.
[31] T. D. Huan , V. Sharma , G. A. Rossetti Jr. , R. Ramprasad, “Pathways Towards Ferroelectricity in Hafnia,” Phys. Rev. B, vol. 90, pp. 064111, 2014.
[32] W. Y. Wang, “Study of Supercritical Fluid Technology on Novel Transparent Amorphous Aluminum Zinc Tin Oxide Thin Film Transistors,” 2011.
[33] Y. T. Liao, “Investigation on Amorphous Nitrogenated Indium Gallium Zinc Oxide Thin Film Transistors Application,” 2014.
[34] L. F. Wah, L. C. wei, “Recent developments of graphene-TiO2 composite nanomaterials as efficient photoelectrodes in dye-sensitized solar cells:A review,” Renewable and Sustainable Energy Reviews, vol. 82, pp. 103-125, 2017.
[35] Y. Alexander, Z. Ilya, F. Yishay, and S. Victor, “Controlled fluoridation of amorphous carbon films deposited at reactive plasma conditions,” Materials Science-Poland, vol. 33, pp. 606-611, 2015.
[36] L. Laurent, O. Mario, T. David, “Lipidomics by Supercritical Fluid Chromatography,” International Journal of Molecular Sciences, vol. 16, pp. 13868-13884, 2015.
[37] P. T. Liu, C. T. Tsai, T. C. Chang, K. T. Kin, P. L. Chang, C. Chen and Y. C. Chen, “Effects of Supercritical Fluids Activation on Carbon Nanotube Field Emitters,” IEEE Transactions on Nanotechnology, vol. 6, pp. 29-34, 2007.
[38] Z. T., F. Xiaosheng, Z. Haibo, X. Xijin, B. Yoshio, and G. Dmitri, “Vapor-phase synthesis of one-dimensional ZnS, CdS, and ZnxCd1–xS nanostructures,” Pure and Applied Chemistry, vol. 82, pp. 11, 2010.
[39] S. Y. Park, K. H. Ji, H. Y. Jung, J. I. Kim, R. Choi, K. S. Son, M. K. Ryu, S. Lee, and J. K. Jeong, “Improvement in the device performance of tin-doped indium oxide transistor by oxygen high pressure annealing at 150 °C,” Appl. Phys. Lett., vol. 100, p. 162108, 2012.
[40] P. T. Liu, C. H. Chang and C. J. Chang, “Suppression of photo-bias induced instability for amorphous indium tungsten oxide thin film transistors with bi-layer structure,” Appl. Phys. Lett., vol. 108, pp. 261603, 2016.
[41] C. J. Su et al., “Nano-scaled Ge FinFETs with Low Temperature Ferroelectric HfZrOx on Specific Interfacial Layers Exhibiting 65% S.S. Reduction and Improved ION,” VLSI Tech. Symp., T12-1, 2017.
[42] J. H. Park, G. S. Jang, H. Y. Kim, K. H. Seok, H. J. Chae, S. K. Lee and S. K. Joo, “Sub-kT/q subthreshold-slope using negative capacitance in low temperature polycrystalline-silicon thin-film transistor,” Sci. Rep., vol. 6, pp. 24734, 2016.
[43] Z. Jiuren, H. Genquan, P. Yue, L. Yan, Z. J.F, S. Qing-Qing, Z. David, and H. Yue, “Ferroelectric Negative Capacitance GeSn PFETs with Sub-20 mV/decade Subthreshold Swing,” IEEE Electron Device Letters, vol. 38, pp. 1157-1160, 2017.
[44] C.H. Cheng, A. Chin, “Low-voltage steep turn-on pMOSFET using ferroelectric high-κ gate dielectric,” IEEE Electron Device Lett., vol. 35, pp. 274–276, 2014.
[45] Z. Ye, Y. Yuan, H. Xu, Y. Liu, J. Luo, and M. Wong, “Mechanism and Origin of Hysteresis in Oxide Thin-Film Transistor and Its Application on 3-D Nonvolatile Memory,” IEEE Trans. Electron Devices., vol. 64, pp. 438, 2017.
[46] L. Petti, N. Münzenrieder, C. Vogt, H. Faber, L. Büthe, G. Cantarella, F. Bottacchi, T. D. Anthopoulos and G. Tröster, “Metal oxide semiconductor thin-film transistors for flexible electronics,” Appl. Phys. Rev., vol. 3, pp. 021303-01, Jun. 2016.
[47] P. T. Liu, Y. T. Chou and L. F. Teng, “Environment-dependent metastability of passivation-free indium zinc oxide thin film transistor after gate bias stress,” Appl. Phys. Lett., vol. 95, pp. 233504, 2009.
[48] C. S. Fuh, S. M. Sze, P. T. Liu, L. F. Teng and Y. T. Chou, “Role of environmental and annealing conditions on the passivation-free in-Ga–Zn–O TFT,” Thin Solid Films, vol. 520, pp. 1489, 2011.
[49] S. M. Hsu, “Study on High Performance Amorphous In-W-Zn-O Ultra-Thin Film Transistors Technology,” 2017.
[50] C. T. Tsai, T. C. Chang, P. T. Liu, P. Y. Yang, Y. C. Kuo, K. T. Kin, P. L. Chang, and F. S. Huang, “Low temperature method for enhancing sputter deposited HfO2 films with complete oxidization,” Applied Physics Letters, vol. 91, pp. 012109, 2007.
校內:2023-08-31公開