簡易檢索 / 詳目顯示

研究生: 劉昱
Liu, Yu
論文名稱: 氧化銫鎢/銀奈米複合物之製備及其在光熱殺菌之應用
Preparation of CsxWO3/Ag nanocomposite and its application in photothermal killing of bacteria
指導教授: 陳東煌
Chen, Dong-Hwang
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 74
中文關鍵詞: 氧化銫鎢銀奈米粒子微波輔助合成法近紅外光光熱殺菌大腸桿菌抗菌玻璃
外文關鍵詞: cesium tungsten oxide, silver nanoparticles, microwave-assisted synthesis method, near-infrared photothermal antibacteria, E. coli, antibacterial glass
相關次數: 點閱:67下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係以硝酸銀作為前驅鹽、左旋精胺酸作為還原劑、乙二醇為溶劑,利用微波輔助合成法將銀奈米顆粒還原並與氧化銫鎢複合,此合成方式可大幅縮短合成時間與能源損耗,最後將氧化銫鎢/銀奈米複合物應用於近紅外光光熱殺菌。氧化銫鎢與氧化銫鎢/銀於近紅外光波段(780-1300 nm)皆具有優異之吸收特性,並在照射近紅外光 (808 nm, 2.4 W /cm2) 10分鐘後溫度顯著上升,為一良好之近紅外光光熱轉換材料。本研究以平板計數法探討氧化銫鎢及氧化銫鎢/銀奈米複合物在不同濃度及有無照射近紅外光情況下之殺菌效果,氧化銫鎢/銀結合了光熱轉換殺菌及銀自身殺菌機制,儘管只有少量的銀存在,針對大腸桿菌即具有卓越之殺菌效果。除了將氧化銫鎢/銀應用於醫療上細菌感染疾病之治療,利用其在可見光之良好穿透性以及近紅外光之遮蔽能力,將其塗佈於玻璃上,此一兼具隔熱效果之抗菌玻璃將具有應用之前景。

    This thesis concerns the facile preparation of cesium tungsten oxide/silver (CsxWO3/Ag) nanocomposite as the near-infrared (NIR) photothermal antibacterial agent. Ag nanoparticles were reduced and combined with CsxWO3 to form CsxWO3/Ag nanocomposite through the microwave-assisted synthesis method by using silver nitrate as the precursor, L-arginine as the reductant and ethylene glycol as the solvent. Both the CsxWO3 and the CsxWO3/Ag exhibited high absorption in the NIR region (780-1300 nm), and had the obvious increase in temperature upon NIR laser (808 nm, 2.4 W/cm2) irradiation for 10 min, indicating that they had excellent photothermal conversion property. The antibacterial activity of different concentration of the CsxWO3 and the CsxWO3/Ag against the E. coli with or without NIR laser irradiation was confirmed by the plate-counting method. In spite of the few Ag content, CsxWO3/Ag nanocomposite, which combined the photothermal effect and intrinsic antibacterial mechanism of Ag, possessed outstanding antibacterial activity under NIR laser irradiation. Besides the medical use in bacterial infection therapy, CsxWO3/Ag was suitable to be coated on the glass due to its high transmittance in the visible light region and NIR shielding property. The CsxWO3/Ag coated glass would be a promising application in antibacterial glass, which could insulate the heat energy simultaneously.

    中文摘要 I Abstract II Extended Abstract IV 誌謝 VIII 總目錄 XI 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1.1 近紅外光光熱治療 1 1.1.1 光熱轉換材料 1 1.1.2 近紅外光光熱治療在致病菌感染之研究 3 1.2 氧化銫鎢 8 1.2.1 氧化銫鎢簡介 8 1.2.2 氧化銫鎢之應用 10 1.3 銀奈米粒子 14 1.3.1 銀奈米粒子殺菌機制 14 1.3.2 銀奈米粒子與光熱轉換材料複合物於協同殺菌之研究 16 1.4 研究動機 19 第二章 基礎理論 20 2.1 微波輔助合成法 20 2.2 表面電漿共振 23 第三章 實驗方法 26 3.1 實驗藥品、儀器與材料 26 3.1.1 實驗藥品 26 3.1.2 實驗儀器 27 3.1.3 實驗材料 30 3.2 氧化銫鎢/銀奈米複合粒子之製備 31 3.3 細菌實驗之製備 33 3.3.1 細菌培養液、培養基及磷酸緩衝溶液之製備 33 3.3.2 細菌培養方法 34 3.3.3 細菌凍結方法 35 3.3.4 細菌數目計算及檢量線製作 36 3.4 材料鑑定與分析 38 3.5 近紅外光光熱轉換效應分析 40 3.6 近紅外光光熱轉換穩定性分析 41 3.7 殺菌實驗 42 3.8 氧化銫鎢塗佈玻璃之製備 43 第四章 結果與討論 44 4.1 材料鑑定 44 4.2 近紅外光光熱轉換效應 51 4.3氧化銫鎢/銀之殺菌效果 54 4.4氧化銫鎢塗佈玻璃 61 第五章 結論 64 參考文獻 65 表目錄 表1.1 近紅外光光熱治療在致病菌感染之研究 7 表1.2 銀奈米粒子與光熱轉換材料複合物於協同殺菌之研究 18   圖目錄 圖1.1 細菌抵抗抗生素之機制 4 圖1.2 常見無機奈米粒子殺菌機制 5 圖1.3 GO-IO-CS奈米複合粒子之製備與其磁性分離及光熱殺菌之應用 5 圖1.4 Au@Pt奈米複合物的製備與其捕捉細菌及光熱殺菌之應用 6 圖1.5 CsxWO3之鎢青銅結構 9 圖1.6 g-C3N4@CsxWO3之(a)隔熱效果與(b)光催化分解揮發性有機物之示意圖 12 圖1.7 (a) CsxWO3 NR@PEM之顯影與光熱治療示意圖;(b)、(c)照射近紅外光後腫瘤區域溫度上升情形;(d)腫瘤抑制效果 12 圖1.8 CsxWO3於連續式流動光熱殺菌之應用 13 圖1.9 GO-HA-AgNPs之(a)協同殺菌示意圖及(b)協同殺菌效果 17 圖1.10 Ag+-GCS-PDA@GNRs複合物協同殺菌之示意圖 17 圖2.1 水分子在微波電場下之加熱機制 21 圖2.2 金屬奈米粒子表面電漿震盪示意圖 24 圖2.3 不同粒徑之金奈米粒子吸收光譜 25 圖2.4不同晶體結構之氧化銫鎢吸收光譜圖;由上而下分別為六角柱(hexagonal prisms)、截角柱(truncated cubes)、擬球體(pseudospheres)及氧化鎢(WO2.72)奈米棒 25 圖3.1 CsxWO3/Ag製備流程示意圖 32 圖3.2 E. coli之檢量線 37 圖3.3近紅外光光熱轉換效應實驗裝置圖 40 圖3.4 CsxWO3塗佈玻璃之製備流程示意圖 43 圖4.1 CsxWO3 (a)與CsxWO3/Ag (b)之TEM圖 44 圖4.2 CsxWO3/Ag之HR-TEM圖 45 圖4.3 CsxWO3/Ag之元素mapping區域(a)與Cs(b)、W(c)、O(d)及Ag(e)之元素mapping分析圖譜 47 圖4.4 CsxWO3/Ag之EDX圖譜 47 圖4.5 (a) CsxWO3及CsxWO3/Ag之XRD圖譜; (b) CsxWO3及CsxWO3/Ag於2θ = 35o-40o之XRD圖譜 49 圖4.6 CsxWO3及CsxWO3/Ag (50 μg/mL)之UV-VIS-NIR光譜圖 50 圖4.7 純水與濃度200、100與50 μg/mL之CsxWO3及CsxWO3/Ag在照射近紅外光雷射(808 nm, 2.4 W/cm2)10分鐘期間溫度隨時間上升的情形 52 圖4.8 (a) CsxWO3/Ag於10個近紅外光照射循環期間溫度隨時間之變化;(b) CsxWO3/Ag照射近紅外光10個循環前後之UV-VIS-NIR光譜圖 53 圖4.9 (a)原始E. coli及(b) E. coli與CsxWO3/Ag結合之TEM圖 56 圖4.10 (a)濃度200 μg/mL之CsxWO3及CsxWO3/Ag在不同條件下對E. coli培養之情形及(b)細菌生存率量化圖。(I)只含E. coli菌液且未照射近紅外光;(II)只含E. coli菌液並照射近紅外光(808 nm, 2.4 W/cm2);(III)E. coli菌液 + CsxWO3未照射近紅外光;(IV)E. coli菌液 + CsxWO3且照射近紅外光;(V)E. coli菌液 + CsxWO3/Ag未照射近紅外光;(VI)E. coli菌液 + CsxWO3/Ag且照射近紅外光。 (a)濃度50 μg/mL之CsxWO3及CsxWO3/Ag在不同條件下對E. coli培養之情形及(b)細菌生存率量化圖。(I)只含E. coli菌液且未照射近紅外 57 圖4.11 (a)濃度100 μg/mL之CsxWO3及CsxWO3/Ag在不同條件下對E. coli培養之情形及(b)細菌生存率量化圖。(I)只含E. coli菌液且未照射近紅外光;(II)只含E. coli菌液並照射近紅外光(808 nm, 2.4 W/cm2);(III)E. coli菌液 + CsxWO3未照射近紅外光;(IV)E. coli菌液 + CsxWO3且照射近紅外光;(V)E. coli菌液 + CsxWO3/Ag未照射近紅外光;(VI)E. coli菌液 + CsxWO3/Ag且照射近紅外光。 58 圖4.12光;(II)只含E. coli菌液並照射近紅外光(808 nm, 2.4 W/cm2);(III)E. coli菌液 + CsxWO3未照射近紅外光;(IV)E. coli菌液 + CsxWO3且照射近紅外光;(V)E. coli菌液 + CsxWO3/Ag未照射近紅外光;(VI)E. coli菌液 + CsxWO3/Ag且照射近紅外光。 59 圖4.13 各條件在不同濃度下之抗菌效果比較。(I)只含E. coli菌液且未照射近紅外光;(II)只含E. coli菌液並照射近紅外光(808 nm, 2.4 W/cm2);(III)E. coli菌液 + CsxWO3未照射近紅外光;(IV)E. coli菌液 + CsxWO3且照射近紅外光;(V)E. coli菌液 + CsxWO3/Ag未照射近紅外光;(VI)E. coli菌液 + CsxWO3/Ag且照射近紅外光。 60 圖4.14 (a)塗佈不同濃度CsxWO3之玻璃實際照片;(b)塗佈不同濃度CsxWO3之玻璃穿透圖譜 62 圖4.15 不同條件之玻璃照射近紅外光30 min後之溫度變化。(I)空白玻璃;(II)玻璃+樹脂;(III)玻璃+樹脂+1 wt% CsxWO3;(IV)玻璃+樹脂+5 wt% CsxWO3;(V)玻璃+樹脂+12.5 wt% CsxWO3 63

    [1] V. Shanmugam, S. Selvakumar, and C. S. Yeh, Near-infrared light-responsive nanomaterials in cancer therapeutics, Chem. Soc. Rev., 43 (17), 6254-6287, 2014.
    [2] Q. Chen, J. Wen, H. Li, Y. Xu, F. Liu, and S. Sun, Recent advances in different modal imaging-guided photothermal therapy, Biomaterials, 106, 144-166, 2016.
    [3] L. Zou, H. Wang, B. He, L. Zeng, T. Tan, H. Cao, X. He, Z. Zhang, S. Guo, and Y. Li, Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics, Theranostics, 6 (6), 762-772, 2016.
    [4] A. K. Rengan, A. B. Bukhari, A. Pradhan, R. Malhotra, R. Banerjee, R. Srivastava, and A. De, In vivo analysis of biodegradable liposome gold nanoparticles as efficient agents for photothermal therapy of cancer, Nano Lett., 15 (2), 842-848, 2015.
    [5] R. Chen, X. Wang, X. Yao, X. Zheng, J. Wang, and X. Jiang, Near-IR-triggered photothermal/photodynamic dual-modality therapy system via chitosan hybrid nanospheres, Biomaterials, 34 (33), 8314-8322, 2013.
    [6] J. W. Xiao, S. X. Fan, F. Wang, L. D. Sun, X. Y. Zheng, and C. H. Yan, Porous Pd nanoparticles with high photothermal conversion efficiency for efficient ablation of cancer cells, Nanoscale, 6 (8), 4345-4351, 2014.
    [7] S. Peng, Y. He, M. Er, Y. Sheng, Y. Gu, and H. Chen, Biocompatible CuS-based nanoplatforms for efficient photothermal therapy and chemotherapy in vivo, Biomater. Sci., 5 (3), 475-484, 2017.
    [8] X. Meng, Z. Liu, Y. Cao, W. Dai, K. Zhang, H. Dong, X. Feng, and X. Zhang, fabricating aptamer-conjugated PEGylated-MoS2/Cu1.8S theranostic nanoplatform for multiplexed imaging diagnosis and chemo-photothermal therapy of cancer, Adv. Funct. Mater., 27 (16), 1605592, 2017.
    [9] B. Li, Y. Zhang, R. Zou, Q. Wang, B. Zhang, L. An, F. Yin, Y. Hua, and J. Hu, Self-assembled WO3-x hierarchical nanostructures for photothermal therapy with a 915 nm laser rather than the common 980 nm laser, Dalton Trans., 43 (16), 6244-6250, 2014.
    [10] W. Xu, Z. Meng, N. Yu, Z. Chen, B. Sun, X. Jiang, and M. Zhu, PEGylated CsxWO3 nanorods as an efficient and stable 915 nm-laser-driven photothermal agent against cancer cells, RSC Adv., 5 (10), 7074-7082, 2015.
    [11] T. Yin, J. Liu, Z. Zhao, Y. Zhao, L. Dong, M. Yang, J. Zhou, and M. Huo, Redox sensitive hyaluronic acid-decorated graphene oxide for photothermally controlled tumor-cytoplasm-selective rapid drug delivery, Adv. Funct. Mater., 27 (14), 1604620, 2017.
    [12] Z. Sobhani, M. A. Behnam, F. Emami, A. Dehghanian, and I. Jamhiri, Photothermal therapy of melanoma tumor using multiwalled carbon nanotubes, Int. J. Nanomedicine, 12, 4509-4517, 2017.
    [13] Z. Hu, C. Wang, F. Zhao, X. Xu, S. Wang, L. Yu, D. Zhang, and Y. Huang, Fabrication of a graphene/C60 nanohybrid via gamma-cyclodextrin host-guest chemistry for photodynamic and photothermal therapy, Nanoscale, 9 (25), 8825-8833, 2017.
    [14] X. Wang, H. Li, X. Liu, Y. Tian, H. Guo, T. Jiang, Z. Luo, K. Jin, X. Kuai, Y. Liu, Z. Pang, W. Yang, and S. Shen, Enhanced photothermal therapy of biomimetic polypyrrole nanoparticles through improving blood flow perfusion, Biomaterials, 143, 130-141, 2017.
    [15] Y. Li, C. Jiang, D. Zhang, Y. Wang, X. Ren, K. Ai, X. Chen, and L. Lu, Targeted polydopamine nanoparticles enable photoacoustic imaging guided chemo-photothermal synergistic therapy of tumor, Acta Biomater., 47, 124-134, 2017.
    [16] B. Xia, B. Wang, J. Shi, Y. Zhang, Q. Zhang, Z. Chen, and J. Li, Photothermal and biodegradable polyaniline/porous silicon hybrid nanocomposites as drug carriers for combined chemo-photothermal therapy of cancer, Acta Biomater., 51, 197-208, 2017.
    [17] W. Chen, K. Zeng, H. Liu, J. Ouyang, L. Wang, Y. Liu, H. Wang, L. Deng, and Y.-N. Liu, Cell membrane camouflaged hollow prussian blue nanoparticles for synergistic photothermal-/chemotherapy of cancer, Adv. Funct. Mater., 27 (11), 1605795, 2017.
    [18] S. Yang, Z. Li, Y. Wang, X. Fan, Z. Miao, Y. Hu, Z. Li, Y. Sun, F. Besenbacher, and M. Yu, Multifunctional Bi@PPy-PEG core-shell nanohybrids for dual-modal imaging and photothermal therapy, ACS Appl. Mater. Interfaces, 10 (2), 1605-1615, 2018.
    [19] H. Wang, S. Mukherjee, J. Yi, P. Banerjee, Q. Chen, and S. Zhou, Biocompatible chitosan-carbon dot hybrid nanogels for NIR-imaging-guided synergistic photothermal-chemo therapy, ACS Appl. Mater. Interfaces, 9 (22), 18639-18649, 2017.
    [20] L. Tan, J. Wan, W. Guo, C. Ou, T. Liu, C. Fu, Q. Zhang, X. Ren, X. J. Liang, J. Ren, L. Li, and X. Meng, Renal-clearable quaternary chalcogenide nanocrystal for photoacoustic/magnetic resonance imaging guided tumor photothermal therapy, Biomaterials, 159, 108-118, 2018.
    [21] M. Teodorescu and M. Bercea, Poly(vinylpyrrolidone) – a versatile polymer for biomedical and beyond medical applications, Polym. Plast. Technol. Eng., 54 (9), 923-943, 2015.
    [22] W. Cai, J. Wang, H. Liu, W. Chen, J. Wang, L. Du, J. Hu, and C. Wu, Gold nanorods@metal-organic framework core-shell nanostructure as contrast agent for photoacoustic imaging and its biocompatibility, J. Alloys Compd., 748, 193-198, 2018.
    [23] Y. Zhang, H. Zhang, Y. Wang, H. Wu, B. Zeng, Y. Zhang, Q. Tian, and S. Yang, Hydrophilic graphene oxide/bismuth selenide nanocomposites for CT imaging, photoacoustic imaging, and photothermal therapy, J. Mater. Chem. B, 5 (9), 1846-1855, 2017.
    [24] P. Lei, R. An, P. Zhang, S. Yao, S. Song, L. Dong, X. Xu, K. Du, J. Feng, and H. Zhang, Ultrafast synthesis of ultrasmall poly(vinylpyrrolidone)-protected bismuth nanodots as a multifunctional theranostic agent for in vivo dual-modal CT/photothermal-imaging-guided photothermal therapy, Adv. Funct. Mater., 27 (35), 1702018, 2017.
    [25] L. Dong, G. Ji, Y. Liu, X. Xu, P. Lei, K. Du, S. Song, J. Feng, and H. Zhang, Multifunctional Cu-Ag2S nanoparticles with high photothermal conversion efficiency for photoacoustic imaging-guided photothermal therapy in vivo, Nanoscale, 10 (2), 825-831, 2018.
    [26] A. Fleming, The discovery of penicillin, Br. Med. Bull., 2 (1), 4-5, 1944.
    [27] S. B. Levy and B. Marshall, Antibacterial resistance worldwide: causes, challenges and responses, Nat. Med., 10 (12), S122-129, 2004.
    [28] C. W. Chen, C. Y. Hsu, S. M. Lai, W. J. Syu, T. Y. Wang, and P. S. Lai, Metal nanobullets for multidrug resistant bacteria and biofilms, Adv. Drug Deliv. Rev., 78, 88-104, 2014.
    [29] X. Jia, I. Ahmad, R. Yang, and C. Wang, Versatile graphene-based photothermal nanocomposites for effectively capturing and killing bacteria, and for destroying bacterial biofilms, J. Mater. Chem. B, 5 (13), 2459-2467, 2017.
    [30] J. Zhang, Y. Feng, J. Mi, Y. Shen, Z. Tu, and L. Liu, Photothermal lysis of pathogenic bacteria by platinum nanodots decorated gold nanorods under near infrared irradiation, J. Hazard. Mater., 342, 121-130, 2018.
    [31] M. Ramasamy, S. S. Lee, D. K. Yi, and K. Kim, Magnetic, optical gold nanorods for recyclable photothermal ablation of bacteria, J. Mater. Chem. B, 2 (8), 981-988, 2014.
    [32] J. Huang, J. Zhou, J. Zhuang, H. Gao, D. Huang, L. Wang, W. Wu, Q. Li, D. P. Yang, and M. Y. Han, Strong near-infrared absorbing and biocompatible CuS nanoparticles for rapid and efficient photothermal ablation of Gram-positive and -negative bacteria, ACS Appl. Mater. Interfaces, 9 (42), 36606-36614, 2017.
    [33] X. Dai, Y. Zhao, Y. Yu, X. Chen, X. Wei, X. Zhang, and C. Li, Single continuous near-infrared laser-triggered photodynamic and photothermal ablation of antibiotic-resistant bacteria using effective targeted copper sulfide nanoclusters, ACS Appl. Mater. Interfaces, 9 (36), 30470-30479, 2017.
    [34] C. Korupalli, C. C. Huang, W. C. Lin, W. Y. Pan, P. Y. Lin, W. L. Wan, M. J. Li, Y. Chang, and H. W. Sung, Acidity-triggered charge-convertible nanoparticles that can cause bacterium-specific aggregation in situ to enhance photothermal ablation of focal infection, Biomaterials, 116, 1-9, 2017.
    [35] S. H. Kim, E. B. Kang, C. J. Jeong, S. M. Sharker, I. In, and S. Y. Park, Light controllable surface coating for effective photothermal killing of bacteria, ACS Appl. Mater. Interfaces, 7 (28), 15600-15606, 2015.
    [36] S. K. Deb, Opportunities and challenges in science and technology of WO3 for electrochromic and related applications, Sol. Energy Mater. Sol. Cells, 92 (2), 245-258, 2008.
    [37] C. S. Griffith, V. Luca, J. V. Hanna, K. J. Pike, M. E. Smith, and G. S. Thorogood, Microcrystalline hexagonal tungsten bronze. 1. Basis of ion exchange selectivity for cesium and strontium, Inorg. Chem., 48 (13), 5648-5662, 2009.
    [38] C. Guo, S. Yin, M. Yan, and T. Sato, Facile synthesis of homogeneous CsxWO3 nanorods with excellent low-emissivity and NIR shielding property by a water controlled-release process, J. Mater. Chem., 21 (13), 5099-5105, 2011.
    [39] H. Takeda and K. Adachi, Near infrared absorption of tungsten oxide nanoparticle dispersions, J. Am. Ceram. Soc., 90 (12), 4059-4061, 2007.
    [40] Y. Li, X. Wu, J. Li, K. Wang, and G. Zhang, Z-scheme g-C3N4 @CsxWO3 heterostructure as smart window coating for UV isolating, Vis penetrating, NIR shielding and full spectrum photocatalytic decomposing VOCs, Appl. Catal., B, 229, 218-226, 2018.
    [41] W. Guo, C. Guo, N. Zheng, T. Sun, and S. Liu, CsxWO3 nanorods coated with polyelectrolyte multilayers as a multifunctional nanomaterial for bimodal imaging-guided photothermal/photodynamic cancer treatment, Adv. Mater., 29 (4), 1604157, 2017.
    [42] Y. K. Kim, E. B. Kang, S. M. Kim, C. P. Park, I. In, and S. Y. Park, Performance of NIR-mediated antibacterial continuous flow microreactors prepared by mussel-inspired immobilization of Cs0.33WO3 photothermal agents, ACS Appl. Mater. Interfaces, 9 (3), 3192-3200, 2017.
    [43] B. Das, S. K. Dash, D. Mandal, T. Ghosh, S. Chattopadhyay, S. Tripathy, S. Das, S. K. Dey, D. Das, and S. Roy, Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage, Arab. J. Chem., 10 (6), 862-876, 2017.
    [44] J. K. Patra and K. H. Baek, Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria along with its anticandidal and antioxidant effects, Front. Microbiol., 8, 167, 2017.
    [45] A. Ahmad, Y. Wei, F. Syed, K. Tahir, A. U. Rehman, A. Khan, S. Ullah, and Q. Yuan, The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles, Microb. Pathog., 102, 133-142, 2017.
    [46] A. Singh, N. B. Singh, S. Afzal, T. Singh, and I. Hussain, Zinc oxide nanoparticles: a review of their biological synthesis, antimicrobial activity, uptake, translocation and biotransformation in plants, J. Mater. Sci., 53 (1), 185-201, 2017.
    [47] A. Raja, S. Ashokkumar, R. Pavithra Marthandam, J. Jayachandiran, C. P. Khatiwada, K. Kaviyarasu, R. Ganapathi Raman, and M. Swaminathan, Eco-friendly preparation of zinc oxide nanoparticles using Tabernaemontana divaricata and its photocatalytic and antimicrobial activity, J. Photochem. Photobiol. B, 181, 53-58, 2018.
    [48] S. Ehsan and M. Sajjad, Bioinspired synthesis of zinc oxide nanoparticle and its combined efficacy with different antibiotics against multidrug resistant bacteria, J. Biomater. Nanobiotechnol., 08 (02), 159-175, 2017.
    [49] P. Karaolia, I. Michael-Kordatou, E. Hapeshi, C. Drosou, Y. Bertakis, D. Christofilos, G. S. Armatas, L. Sygellou, T. Schwartz, N. P. Xekoukoulotakis, and D. Fatta-Kassinos, Removal of antibiotics, antibiotic-resistant bacteria and their associated genes by graphene-based TiO2 composite photocatalysts under solar radiation in urban wastewaters, Appl. Catal., B, 224, 810-824, 2018.
    [50] B. Sharma, P. K. Boruah, A. Yadav, and M. R. Das, TiO2 –Fe2O3 nanocomposite heterojunction for superior charge separation and the photocatalytic inactivation of pathogenic bacteria in water under direct sunlight irradiation, J. Environ. Chem. Eng., 6 (1), 134-145, 2018.
    [51] J. Cabrera, D. Acosta, A. López, R. J. Candal, C. Marchi, P. García, D. Ríos, and J. M. Rodriguez, 1D TiO2 nanostructures prepared from seeds presenting tailored TiO2 crystalline phases and their photocatalytic activity for Escherichia coli in water, Int. J. Photoenergy, 2018, 1-6, 2018.
    [52] S. Chernousova and M. Epple, Silver as antibacterial agent: ion, nanoparticle, and metal, Angew. Chem. Int. Ed. Engl., 52 (6), 1636-1653, 2013.
    [53] V. Lazar, Quorum sensing in biofilms - how to destroy the bacterial citadels or their cohesion/power?, Anaerobe, 17 (6), 280-285, 2011.
    [54] M. Rai, K. Kon, A. Ingle, N. Duran, S. Galdiero, and M. Galdiero, Broad-spectrum bioactivities of silver nanoparticles: the emerging trends and future prospects, Appl. Microbiol. Biotechnol., 98 (5), 1951-1961, 2014.
    [55] J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez, and M. J. Yacaman, The bactericidal effect of silver nanoparticles, Nanotechnology, 16 (10), 2346-2353, 2005.
    [56] R. Dastjerdi, M. R. M. Mojtahedi, A. M. Shoshtari, and A. Khosroshahi, Investigating the production and properties of Ag/TiO2/PP antibacterial nanocomposite filament yarns, J. TEXT. I., 101 (3), 204-213, 2010.
    [57] S. Prabhu and E. K. Poulose, Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects, Int. Nano Lett., 2 (1), 32, 2012.
    [58] X. Ran, Y. Du, Z. Wang, H. Wang, F. Pu, J. Ren, and X. Qu, Hyaluronic acid-templated Ag nanoparticles/graphene oxide composites for synergistic therapy of bacteria infection, ACS Appl. Mater. Interfaces, 9 (23), 19717-19724, 2017.
    [59] M. Liu, D. He, T. Yang, W. Liu, L. Mao, Y. Zhu, J. Wu, G. Luo, and J. Deng, An efficient antimicrobial depot for infectious site-targeted chemo-photothermal therapy, J. Nanobiotechnology, 16 (1), 23, 2018.
    [60] T. Tian, X. Shi, L. Cheng, Y. Luo, Z. Dong, H. Gong, L. Xu, Z. Zhong, R. Peng, and Z. Liu, Graphene-based nanocomposite as an effective, multifunctional, and recyclable antibacterial agent, ACS Appl. Mater. Interfaces, 6 (11), 8542-8548, 2014.
    [61] R. Liu, X. Wang, J. Ye, X. Xue, F. Zhang, H. Zhang, X. Hou, X. Liu, and Y. Zhang, Enhanced antibacterial activity of silver-decorated sandwich-like mesoporous silica/reduced graphene oxide nanosheets through photothermal effect, Nanotechnology, 29 (10), 105704, 2018.
    [62] Q. Yin, L. Tan, Q. Lang, X. Ke, L. Bai, K. Guo, R. Qiao, and S. Bai, Plasmonic molybdenum oxide nanosheets supported silver nanocubes for enhanced near-infrared antibacterial activity: Synergism of photothermal effect, silver release and photocatalytic reactions, Appl. Catal. B, 224, 671-680, 2018.
    [63] W. Fang, H. Zhang, X. Wang, W. Wei, Y. Shen, J. Yu, J. Liang, J. Zheng, and Y. Shen, Facile synthesis of tunable plasmonic silver core/magnetic Fe3O4 shell nanoparticles for rapid capture and effective photothermal ablation of bacterial pathogens, New J. Chem., 41 (18), 10155-10164, 2017.
    [64] Y. Peng, Y. Liu, X. Lu, S. Wang, M. Chen, W. Huang, Z. Wu, G. Lu, and L. Nie, Ag-Hybridized plasmonic Au-triangular nanoplates: highly sensitive photoacoustic/Raman evaluation and improved antibacterial/photothermal combination therapy, J. Mater. Chem. B, 6 (18), 2813-2820, 2018.
    [65] A. Sikora and V. F. Groza, Coexistence of IEEE802.15.4 with other Systems in the 2.4 GHz-ISM-Band, in 2005 IEEE Instrumentationand Measurement Technology Conference Proceedings, 3, 2005.
    [66] M. Tsuji, M. Hashimoto, Y. Nishizawa, M. Kubokawa, and T. Tsuji, Microwave-assisted synthesis of metallic nanostructures in solution, Chemistry (Easton), 11 (2), 440-452, 2005.
    [67] Y.-J. Zhu and X.-L. Hu, Microwave-polyol preparation of single-crystalline gold nanorods and nanowires, Chem. Lett., 32 (12), 1140-1141, 2003.
    [68] M. Tsuji, Y. Nishizawa, M. Hashimoto, and T. Tsuji, Syntheses of silver nanofilms, nanorods, and nanowires by a microwave-polyol method in the presence of Pt seeds and polyvinylpyrrolidone, Chem. Lett., 33 (4), 370-371, 2004.
    [69] D. Chen, K. Tang, G. Shen, J. Sheng, Z. Fang, X. Liu, H. Zheng, and Y. Qian, Microwave-assisted synthesis of metal sulfides in ethylene glycol, Mater. Chem. Phys., 82 (1), 206-209, 2003.
    [70] X. Tian, C. Cheng, L. Qian, B. Zheng, H. Yuan, S. Xie, D. Xiao, and M. M. F. Choi, Microwave-assisted non-aqueous homogenous precipitation of nanoball-like mesoporous α-Ni(OH)2 as a precursor for NiOx and its application as a pseudocapacitor, J. Mater. Chem., 22 (16), 8029-8035, 2012.
    [71] R. Gedye, Microwave-enhanced chemistry. Fundamentals, sample preparation and applications, J. Am. Chem. Soc., 121 (19), 4729, 1999.
    [72] M. Faraday, The Bakerian Lecture: Experimental relations of gold (and other metals) to light, Philos. Trans. R. Soc. London, 147, 145-181, 1857.
    [73] M. Gustav, Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen, Ann. Phys., 330 (3), 377-445, 1908.
    [74] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment, J. Phys. Chem. B, 107 (3), 668-677, 2003.
    [75] S. Eustis and M. A. El-Sayed, Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes, Chem. Soc. Rev., 35 (3), 209-217, 2006.
    [76] D. Jaque, L. Martinez Maestro, B. del Rosal, P. Haro-Gonzalez, A. Benayas, J. L. Plaza, E. Martin Rodriguez, and J. Garcia Sole, Nanoparticles for photothermal therapies, Nanoscale, 6 (16), 9494-9530, 2014.
    [77] B. J. Wiley, S. H. Im, Z.-Y. Li, J. McLellan, A. Siekkinen, and Y. Xia, Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis, J. Phys. Chem. B, 110 (32), 15666-15675, 2006.
    [78] M. Kanehara, H. Koike, T. Yoshinaga, and T. Teranishi, Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region, J. Am. Chem. Soc., 131 (49), 17736-17737, 2009.
    [79] R. Buonsanti, A. Llordes, S. Aloni, B. A. Helms, and D. J. Milliron, Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals, Nano Lett., 11 (11), 4706-4710, 2011.
    [80] T. R. Gordon, T. Paik, D. R. Klein, G. V. Naik, H. Caglayan, A. Boltasseva, and C. B. Murray, Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO), Nano Lett., 13 (6), 2857-2863, 2013.
    [81] T. M. Mattox, A. Bergerud, A. Agrawal, and D. J. Milliron, Influence of shape on the surface plasmon resonance of tungsten bronze nanocrystals, Chem. Mater., 26 (5), 1779-1784, 2014.
    [82] J. Y. Do, R. K. Chava, K. K. Mandari, N.-K. Park, H.-J. Ryu, M. W. Seo, D. Lee, T. S. Senthil, and M. Kang, Selective methane production from visible-light-driven photocatalytic carbon dioxide reduction using the surface plasmon resonance effect of superfine silver nanoparticles anchored on lithium titanium dioxide nanocubes (Ag@LixTiO2), Appl. Catal. B, 237, 895-910, 2018.

    無法下載圖示 校內:2023-02-22公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE