簡易檢索 / 詳目顯示

研究生: 高楷涵
Kao, Kai-Han
論文名稱: 流域河川消退特徵及地下水儲存量之研究
Study of Basin Recession Characteristics and Groundwater Storage Properties
指導教授: 李振誥
Lee, Cheng-Haw
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 73
中文關鍵詞: 河川流量基流量消退特徵地下水儲存量
外文關鍵詞: streamflow, base-flow, recession characteristics, groundwater storage
相關次數: 點閱:170下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 河川流量及地下水儲存量為人們賴以維生的主要可用淡水資源,本研究探討台灣南部流域河川消退特徵及高屏溪流域地下水儲存量,期能作為台灣水資源管理參考。首先在流域消退特徵方面,本研究參考Brutsaert(2008)低流消退分析模式,制定低流穩定期及常態狀況消退片段篩選模式,參數化台灣南部流域河川的消退曲線,以特徵化流域之河川流量與基流量消退特徵,參數化結果顯示,流域單一消退事件難以描述流域整體消退特徵,流域消退時間與消退事件初始流量大小之關係中,河川流量之二次回歸具高度相關性,並且在台灣南部各流域之消退時間指數空間分佈情形中,里嶺大橋及阿其巴橋流量站有較特殊的流量消退特徵;總體而言,河川流量相較於基流量有較低的消退時間指數,並且流域之低流穩定期消退期間,消退時間指數較流域之常態狀況來得高。
    在地下水儲存量方面,台灣南部各主要流域中,以高屏溪流域流量站及雨量站資料較充足、集水區範圍寬廣,並且上下游有不同的水文特徵,因此針對高屏溪流域進行地下水儲存量探討。本研究考量枯水期之地下水殘存體積,利用基流量歷線推估週期性地下水儲存量,以建立水文週期概念模式,藉由概念模式之累計線形量化結果,探討高屏溪流域各集水區地下水儲存量與降雨量之間的週期性變動情形,以及趨勢變化特徵。透過水文週期累計線形的正規化套疊分析,可判定歷年豐水期發生時間,推估地下水儲存量及降雨量的時間延遲(time lag)關係;正規化套疊分析結果顯示,流域各集水區的時間延遲狀況有所不同,並且水文週期前期之延後天數較中後期來得長。

    Streamflow and groundwater storage are freshwater resources that human live by. In this study, we discuss southern area basin recession characteristics and Kao-Ping River basin groundwater storage, and hope to supply reference to Taiwan water resource management. The first part is about basin recession characteristics. We apply Brutsaert (2008) low flow analysis model to establish two recession data pieces sifting models, including low flow steady period model and normal condition model. Within individual event analysis, group event analysis and southern area basin recession assessment, streamflow and base-flow recession characteristics are parameterized.
    The second part is about groundwater storage. Among main basins in southern Taiwan, there are sufficient streamflow and precipitation gaging station data about Ping River basin and extensive drainage area, and data about different hydrological characteristics between upstream and downstream area. Therefore, this study focuses on Kao-Ping River basin and accesses groundwater storage properties. Taking residue of groundwater volume in dry season into consideration, we use base-flow hydrograph to access periodical property of groundwater storage, in order to establish hydrological period conceptual model. With groundwater storage and precipitation accumulative linearity quantified by hydrological period conceptual model, their periodical changing and alternation trend properties in each drainage areas of Kao-Ping River basin have been estimated. Besides, time lag relationships among each district of Kao-Ping River basin are also assessed.

    中英文摘要 I 誌謝 V 目錄 VI 表目錄 VIII 圖目錄 IX 符號表 X 第一章 緒論 1 1.1 研究背景與動機 1 1.2 前人文獻回顧 2 1.2.1低流統計與消退分析文獻 2 1.2.2地下水儲存量推估相關文獻 3 1.3 研究方法與流程 4 第二章 理論模式 5 2.1 水平衡理論 5 2.2 消退分析模式 6 2.2.1Brutsaert (2008)低流分析模式 6 2.2.2低流穩定期消退片段篩選模式 8 2.2.3常態狀況消退片段篩選模式 9 2.3 基流資料估計法 10 2.4 水文週期概念 15 2.4.1地下水儲存累計量推估 15 2.4.2地下水殘存量推估 17 第三章 研究區域 18 3.1 研究區域概述 18 3.2 流量站資料 18 3.3 雨量站資料 20 第四章 結果與討論 21 4.1 以消退分析模式評估流域消退特徵 21 4.1.1低流穩定期消退片段篩選模式 21 4.1.2常態狀況消退片段篩選模式 23 4.2 流域消退特徵評估 24 4.2.1單一消退事件之消退特性探討 24 4.2.2流域消退時間及消退事件初始流量關係探討 25 4.2.3台灣南部流域消退特徵探討 27 4.3 以水文週期概念模式評估流域地下水儲存量 29 4.3.1週期性量化結果 30 4.3.2相關性及水文狀況探討 47 4.4 水文週期特徵正規化套疊分析 49 4.4.1豐水期發生時間分析 49 4.4.2時間延遲關係探討 54 第五章 研究結論 56 參考文獻 57 附錄A 流量消退模式參數化分析結果 63 附錄B 高屏溪流域雨量站資料 71

    (1) 經濟部水利署 (2014) 「水文年報」。
    (2) Allen, R., and W. Ingram (2002), “Constraints on future changes in climate and the hydrologic cycle,” Nature, 419 pp.224–231.
    (3) Barnes, B.S., 1939. The structure of discharge recession curves. Transactions of American Geophysical Union 20, p. 721-725.
    (4) Boussinesq, J., 1877. Essa sur latheories des eaux courantes. Memoires presentes par divers savants a l' Academic des Sciences de l' Institut national de France. Tome XXIII, no. 1.
    (5) Boughton, W.C. and Freebairn, D.M., (1985), “Hydrograph recession characteristics of some small agricultural catchments,” Australian Journal of Soil Research, 23 pp.373-382.
    (6) Brutsaert, W., and Nieber, J.L. (1977), “Regionalized drought flow hydrographs from a mature glaciated plateau,” Water Resources Research, 13 (3) pp.637~643.
    (7) Brutsaert, W. (2008), “Long-term groundwater storage trends estimated from streamflow records: Climatic perspective,” Water Resources Research, 44 W02409.
    (8) Brutsaert, W., Sugita, M. (2008), “Is Mongolia’s groundwater increasing or decreasing? The case of the Kherlen River basin,” Hydrological Sciences Journal, 53 (6) pp.1221~1229.
    (9) Brutsaert W. (2010), “ Annual drought flow and groundwater storage trends in the eastern half of the United States during the past two-third century,” Theoretical and Applied Climatology, 100(1) pp.93~103.
    (10) Brutsaert W. (2012), “Are the North American deserts expanding? Some climate signals from groundwater storage conditions,” Ecohydrology, 5(5) pp.541–9.
    (11) Chiew, F.H.S., Teng, J., Vaze, J., Post, D.A., Perraud, J.M., Kirono, D.G.C., Viney, N.R. (2009), “Estimating climate change impact on runoff across southeast Australia: method, results, and implications of the modeling method,” Water Resources Research, 45 W10414.
    (12) Chow, V.T., 1964. Handbook of applied hydrology. New York, McGraw-hill, [variously paged].
    (13) Christensen, N.S., Lettenmaier, D.P. (2007), “A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River Basin,” Hydrology and Earth System Sciences, 11 pp.1417–1434.
    (14) Döll, P., Schmied, H.M., Schuh, C., Portmann, F.T., and Eicker, A. (2014), “Global-scale assessment of groundwater depletion and related groundwater abstractions: Combining hydrological modeling with information from well observations and GRACE satellites,” Water Resources Research, 50 pp.5698~5720.
    (15) Famiglietti, J. S., Lo M., Ho S. L., Bethune J., Anderson K. J., Syed T. H., Swenson S. C., Linage C. R., and Rodell M. (2011), “Satellites measure recent rates of groundwater depletion in California’s Central Valley,” Geophysical Research Letters, 38 L03403.
    (16) Fan , Y., Y.Chen, Y. Liu, W. Li (2013), “Variation of baseflows in the headstreams of the Tarim Basin during 1960-2007,” Journal of Hydrology, 487 pp.98-108.
    (17) Franchini, M. and Pacciani, M., (1991), “Comparative analysis of several conceptual rainfall-runoff models,” Journal of Hydrology, 122 pp.161-219.
    (18) Goderniaux, P., Brouyère, S., Fowler, H.J., Blenkinsop, S., Therrien, R., Orban, P., Dassargues, A. (2009), “Large scale surface–subsurface hydrological model to assess climate change impacts on groundwater reserves,” Journal of Hydrology, 373 (1–2) pp.122–138.
    (19) Green, T.R., Taniguchi, M., Kooi, H., Gurdak, J.J., Allen, D.M., Hiscock, K.M., et al. (2011) “Beneath the surface of global change: impacts of climate change on groundwater,” Journal of Hydrology, 405 (3–4) pp.532–560.
    (20) Hall, F.R. (1968), “Base flow recessions--a review,” Water Resources Research, 4(5) pp.973-983.
    (21) Hayhoe, K., et al. (2007), “Past and future changes in climate and hydrological indicators in the US,” Climate Dynamics, 28 pp.381–407.
    (22) Hertzler, R. A., Jr. (1939), “Engineering aspects of the influence of forests on mountain streams,” Civil engineering, 9 pp.487~489.
    (23) Hodgkins, G., T. Dudley, and R. Huntington (2003), “Changes in the number and timing of high river flows in New England over the 20th century,” Journal of Hydrology, 278 pp.244–252.
    (24) Hughes, J.D., Petrone, K.C., and Silberstein, R.P. (2012), “Drought, Groundwater Storage and Declining Stream Flow in Southwestern Australia,” Geophysical Research Letters, 39(3) L03408.
    (25) Kirchner, J.W. (2009), “Catchments as simple dynamical systems:Catchment characterization, rainfall-runoff modeling, and doing hydrology backward,” Water Resources Research, 45 pp.5577~5596.
    (26) Knisel, W.G., (1963), “Baseflow recession analysis for comparison of drainage basin and geology,” Journal of Geophysical Research, 68 pp.3649-3653.
    (27) Korkmaz, N., (1990), “The estimation of groundwater recharge from spring hydrographs,” Hydrological Sciences Journal, 35(2(4)) pp.209-217.
    (28) Krakauer, N. Y. and Temimi, M. (2011) “Stream recession curves and storage variability in small watersheds, Hydrology and Earth System Sciences, 15 pp.2377–2389
    (29) Kulandaiswamy, V.C., and Seetharaman, S. (1969), “A note on Barnes’ method of hydrograph separation,” Journal of Hydrology, 9 pp.222~229.
    (30) Lin, C.T., H.H. Chen, T. Kume, C.R. Chiou (2010), “Comparsion of potential water supply and demand in Taiwan,” Water International, 35 pp.165~176.
    (31) Linsley, R.K., Jr., Kohler, M.A., and Paulhus, J.L.H., 1982. Hydrology for Engineers(3rd ed.). McGraw-Hill, New York. 508 pp.
    (32) Lyon, S.W., Destouni, G., Giesler, R., Humborg, C., Mörth, M., Seibert, J., and Karlsson, J., Troch, P.A. (2009), “Estimation of permafrost thawing rates in a sub-arctic catchment using recession flow analysis,” Hydrology and Earth System Sciences, 13 pp.595~604.
    (33) Maillet, E., 1905. Essai d'hydraulique souterraine et fluviale. Libraire Sci., A. Herman, Paris.
    (34) Malvicini, C. F., Steenhuis, T. S., Walter, M. T., Parlange, J. Y., and Walter, M. F. (2005), “Evaluation of spring flow in the uplands of Matalom, Leyte, Philippines, Advances in Water Resources, 28 pp.1083–1090.
    (35) Mendoza, G.F., Steenhuis, T.S., Walter, M.T., and Parlange, J.V. (2003), “Estimating basin-wide hydraulic parameters of a semi-arid mountainous watershed by recession-flow analysis,” Journal of Hydrology, 279 pp.57~69.
    (36) Merz, R., J. Parajka, and G. Blöschl (2011), “Time stability of catchment model parameters: Implications for climate impact analyses,” Water Resources Research, 47, W02531.
    (37) Milly, P. C. D., J. Betancourt, M. Falkenmark, R. Hirsch, Z. W. Kundzewicz, P. Lettenmaier, and R. J. Stouffer (2008), “Stationarity is dead: Whither water management?,” Science, 319 pp.573–574.
    (38) Nash, J.E. (1960). “A unit hydrograph study, with particular reference to British catchments,” Proceedings of the Institution of Mechanical Engineers, 17 pp.249~282.
    (39) Nathan, R.J., and McMahon, T.A. (1990), “Evaluation of automated techniques for base flow and recession analysis,” Water Resources Research, 26(7) pp. 1465~1473.
    (40) Parlange, J., Stagnitti, F., Heilig, A., Szilagyi, J., Parlange, M., Steenhuis, T., Hogarth, W., Barry, D., and Li, L. (2001), “Sudden drawdown and drainage of a horizontal aquifer,” Water Resources Research, 37 pp.2097–2101, 2001.
    (41) Pe˜na-Arancibia, J. L., van Dijk, A. I. J. M., Mulligan, M., and Bruijnzeel, L. A. (2010), “The role of climatic and terrain attributes in estimating baseflow recession in tropical catchments,” Hydrology and Earth System Sciences, 14 pp.2193–2205.
    (42) Pimentel, D., Berger, B., Filiberto, D., Newton, M., Wolfe, B., Karabinakis, E., Clark, S., Poon, E., Abbett, E., and Nandagopal, S. (2004), “Water Resources: Agricultural and Environmental Issues,” BioScience, 54 (10) pp.909~918.
    (43) Rupp, D. E., Schmidt, J., Woods, R. A., and Bidwell, V. J. (2009) “Analytical assessment and parameter estimation of a low-dimensional groundwater model,” Journal of Hydrology, 377 pp.143–154.
    (44) Rutledge, A.T. (1992), “Methods of using streamflow records for estimating total and effective recharge in the Appalachian Valley and Ridge, Piedmont, and Blue Ridge physiographic provinces, in Hotchkiss, W.R. and Johnson, A.I., eds., Regional aquifer systems of the United States, aquifers of the southern and eastern states,” American Water Resources Association Monograph Series, 17 pp.59~73.
    (45) Shiklomanov IA, Rodda JC. (2003), “World water resources at the beginning of the twenty-first century.” Cambridge University Press.
    (46) Sklash, M. G., and R. N. Farvolden (1979), “The role of groundwater in storm runoff,” Journal of Hydrology, 43 pp.45~65.
    (47) Sugita M, Brutsaert W. (2009), “recent low-flow and groundwater storage changes in upland watersheds of the Kanto region, Japan,” Journal of Hydrologic Engineering, 14(3) pp.280–5.
    (48) Sugita, M., and Brutsaert, W. (2009), “Recent Low-Flow and Groundwater Storage Changes in Upland Watersheds of the Kanto Region, Japan,” Journal of Hydrologic Engineering, 14 (3) pp.280~285.
    (49) Staudinger, M., Stahl, K., Seibert, J., Clark, M. P., and Tallaksen, L. M. (2011), “Comparison of hydrological model structures based on recession and low flow simulations,” Hydrology and Earth System Sciences., 15 pp.3447–3459.
    (50) Teuling, A. J., Lehner, I., Kirchner, J. W., and Seneviratne, S. I. (2010), “Catchments as simple dynamical systems: Experience from a Swiss prealpine catchment,” Water Resources Research, 46 W10502,.
    (51) Troch, P., De Troch, F., and Brutsaert, W. (1993), “Effective Water-Table Depth to Describe Initial Conditions Prior to Storm Rainfall in Humid Regions,” Water Resources Research, 29, pp.427–434.
    (52) Tague, C., and Grant, G.E. (2004), “A geological framework for interpreting the low-flow regimes of Cascade streams, Willamette River Basin, Oregon,” Water Resources Research, 40 W04303.
    (53) Vogel, R.M., and Kroll, C.N. (1992), “Regional Geohydrologic-Geomorphic Relationships for the estimation of Low-Flow Statistics,” Water Resources Research, 28 (9) pp.2451~2458.
    (54) V.U. Smakhtin (2001), “Low flow hydrology: a review,” Journal of Hydrology, 240 pp.147–186.
    (55) Wada, Y., van Beek, L.P.H., van Kempen, C.M., Reckman, J.W.T.M., Vasak, S., and Bierkens, M.F.P. (2010), “Global depletion of groundwater resources,” Geophysical Research Letters, 37 L20402.
    (56) Wilson, E.M., 1974. Engineering Hydrology, 2nd ed., 232 pp., Macmillan, New York.
    (57) Wittenberg, H. and M. Sivapalan. (1999), “Watershed groundwater balance estimation using streamflow recession and base flow separation,” Journal of Hydrology, 219 pp.20-30.
    (58) Zecharias, Y.B., and Brutsaert, W. (1988), “Recession characteristics of groundwater outflow and base flow from mountainous watersheds,” Water Resources Research, 24 (10) pp.1651~1658
    (59) Zhang, L., Brutsaert, W., Crosbie, R., and Potter, N. (2014), “Long-term annual groundwater storage trends in Australian catchment,” Advances in Water Resources, 74 pp.156~165.
    (60) 高于婷(2015),以低流模式評估流域排水特徵及儲水特性,國立成功大學資源工程研究所碩士論文。
    (61) 李振誥、陳尉平、李如晃等人(2002),應用基流資料估計法推估台灣地下水補注量,台灣水利,第 50 卷,第 1 期,69-80 頁。
    (62) 陳尉平(1999),由河川流量資料與流量歷線推估地下水補注量,國立成功大學資源工程學系碩士論文。
    (63) 陳尉平(2006),應用河川流量歷線推估台灣地下水補注量,國立成功大學資源工程學系博士論文。

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE