| 研究生: |
林立紘 Lin, Li-Hung |
|---|---|
| 論文名稱: |
電化學製備金/氧化鎳/泡沫銅電極應用於非酶葡萄糖傳感器 Electrochemical Preparation of Gold and Nickel Oxide Modified Copper Foam Electrode for Non-enzymatic Glucose Sensor |
| 指導教授: |
黃守仁
Whang, Thou-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 葡萄糖 、泡沫銅 、氧化鎳 、電催化 |
| 外文關鍵詞: | glucose, copper foam, nickel oxide, electrocatalysis |
| 相關次數: | 點閱:103 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用具有高比表面積、低毒性之三維開孔結構泡沫銅( Open-cell Copper foam, CF )作為金屬骨架,利用定電位法沉積並鍛燒形成島狀NiO,再通過電化學置換於表面修飾Au。將製備而成之Au/NiO/CF電極應用於電催化葡萄糖氧化反應。
通過調控前處理方式,以及Ni(NO3)2沉積時間、電位、濃度;鍛燒時間、溫度、方式;電置換HAuCl4 溶液濃度、時間等參數。並利用掃描式電子顯微鏡 (SEM)、能量色散X射線光譜(EDS)、X射線繞射分析儀器(XRD)等儀器,對各參數進行表面形貌及元素組成、晶體結構。配合循環伏安法(CV),進行催化葡萄糖氧化之效果分析。並取得最佳化製備條件為使用甲醇、去離子水依序進行10分鐘超音波震盪前處理後,於0.1 M硝酸鎳溶液中進行定電位沉積,固定電位為-1.0 V (vs Ag/AgCl),沉積時間為 300秒。並進行250°C空氣鍛燒1.5小時。最終浸泡於10 mM HAuCl4溶液10秒,即完成Au/NiO/CF電極。
經由SEM、EDS mapping、XRD等儀器鑑定所製備電極特徵,並利用最佳化條件Au/NiO/CF電極進行葡萄糖之感測,於電催化葡萄糖氧化方面,與僅通過前處理泡沫銅電極相比,展現出較良好的傳感特性。工作電位為0.4 V時,線性範圍為 0.07 mM ~ 0.84 mM ( ip = 0.0004[Glucose] + 0.0002,R² = 0.9964 )。偵測極限LOD為0.421 μM。
In this study, a three-dimensional Open-Cell Copper Foam (CF) with high specific surface area and low toxicity was used as the metal frame, deposited and calcined by a constant potential method to form island-like NiO, and then modified Au by galvanic replacement on the surface. The prepared Au/NiO/CF electrode was applied to electrocatalyze the oxidation of glucose.
By adjusting the pretreatment method and Ni(NO3)2 deposition time, potential, concentration; calcination time, temperature, method; electro-displacement HAuCl4 solution concentration, time and other parameters. And using Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), X-ray Diffraction analysis instrument (XRD) and other instruments, combined with Cyclic Voltammetry (CV) to analyze the surface morphology and elemental composition of each parameter, analysis of the crystal structure and the effect of catalyzing the oxidation of glucose. The optimal preparation conditions were obtained as follows, methanol and deionized water were used for 10 minutes of ultrasonic shock pretreatment. Then, the constant potential deposition was carried out in 0.1 M nickel nitrate solution, and the fixed potential was -1.0 V (vs Ag/AgCl) with a deposition time of 300 seconds. And carry out 250°C air calcination for 1.5 hours. Finally soak in 10 mM HAuCl4 solution for 10 seconds to complete the Au/NiO/CF electrode.
The characteristics of the prepared electrode were identified by SEM, EDS mapping, XRD and other instruments, and the optimized condition Au/NiO/CF electrode was used for glucose sensing. In terms of electrocatalytic glucose oxidation, compared with only pre-treated foam copper electrode, showing better sensing properties.
When using the working potential at 0.4 V, with a linear range of 0.07 mM ~ 0.84 mM. (ip = 0.0004[Glucose] + 0.0002, R² = 0.9964), a sensitivity of 410.99 μA mM−1, a low limit of detection (LOD) of 0.421 μM. (S/N = 3)
1. Chough, S. H.; Kim, K. S.; Hyung, K. W.; Cho, H. I.; Park, H. R.; Choi, O. J.; Song, S. H.; Rogers, K. R. Identification of botanical origins of starches using a glucose biosensor and amyloglucosidase. Sensors and Actuators B: Chemical 2006, 114 (2), 573-577.
2. Zierler, K. Whole body glucose metabolism. American Journal of Physiology-Endocrinology and Metabolism 1999, 276 (3), E409-E426.
3. The top 10 causes of death. 9 December 2020 , URL: https://reurl.cc/qL14zg
4. Tehrani, F.; Bavarian, B. Facile and scalable disposable sensor based on laser engraved graphene for electrochemical detection of glucose. Scientific Reports 2016, 6 (1), 27975.
5. Yogish, K. ; M. B. B. S. Diagnosis (Type 1 diabetes FAQs). URL: https://reurl.cc/gDzpvL
6. Ventura, E. E.; Davis, J. N.; Goran, M. I. Sugar Content of Popular Sweetened Beverages Based on Objective Laboratory Analysis: Focus on Fructose Content. Obesity 2011, 19 (4), 868-874.
7. Calcutt, N. A.; Cooper, M. E.; Kern, T. S.; Schmidt, A. M. Therapies for hyperglycaemia-induced diabetic complications: From animal models to clinical trials. Nature Reviews Drug Discovery 2009, 8 (5), 417-429, Review.
8. Chan, M. Global report on diabetes. World Health Organization 2016, 58 (12), 1-88.
9. Herman, W. H. The Global Burden of Diabetes: An Overview. In Diabetes Mellitus in Developing Countries and Underserved Communities, Dagogo-Jack, S. Ed.; Springer International Publishing, 2017; pp 1-5.
10. Wang, Y.; Wang, X.; Lu, W.; Yuan, Q.; Zheng, Y.; Yao, B. A thin film polyethylene terephthalate (PET) electrochemical sensor for detection of glucose in sweat. Talanta 2019, 198, 86-92.
11. Oh, S. Y.; Hong, S. Y.; Jeong, Y. R.; Yun, J.; Park, H.; Jin, S. W.; Lee, G.; Oh, J. H.; Lee, H.; Lee, S.-S.; et al. Skin-Attachable, Stretchable Electrochemical Sweat Sensor for Glucose and pH Detection. ACS Applied Materials; Interfaces 2018, 10 (16), 13729-13740.
12. Sen, D. K.; Sarin, G. S. Tear glucose levels in normal people and in diabetic patients. British Journal of Ophthalmology 1980, 64 (9), 693-695.
13. Liu, C.; Sheng, Y.; Sun, Y.; Feng, J.; Wang, S.; Zhang, J.; Xu, J.; Jiang, D. A glucose oxidase-coupled DNAzyme sensor for glucose detection in tears and saliva. Biosensors and Bioelectronics 2015, 70, 455-461.
14. Liu, J.; Sun, S.; Shang, H.; Lai, J.; Zhang, L. Electrochemical Biosensor Based on Bienzyme and Carbon Nanotubes Incorporated into an Os-complex Thin Film for Continuous Glucose Detection in Human Saliva. Electroanalysis 2016, 28 (9), 2016-2021.
15. Aihara, M.; Kubota, N.; Minami, T.; Shirakawa, R.; Sakurai, Y.; Hayashi, T.; Iwamoto, M.; Takamoto, I.; Kubota, T.; Suzuki, R.; et al. Association between tear and blood glucose concentrations: Random intercept model adjusted with confounders in tear samples negative for occult blood. Journal of Diabetes Investigation 2021, 12 (2), 266-276.
16. Wang, G.; He, X.; Wang, L.; Gu, A.; Huang, Y.; Fang, B.; Geng, B.; Zhang, X. Non-enzymatic electrochemical sensing of glucose. Microchimica Acta 2013, 180 (3), 161-186.
17. Shokrekhodaei, M.; Quinones, S. Review of Non-Invasive Glucose Sensing Techniques: Optical, Electrical and Breath Acetone. Sensors 2020, 20 (5), 1251.
18. Ju, J.; Hsieh, C.-M.; Tian, Y.; Kang, J.; Chia, R.; Chang, H.; Bai, Y.; Xu, C.; Wang, X.; Liu, Q. Surface Enhanced Raman Spectroscopy Based Biosensor with a Microneedle Array for Minimally Invasive In Vivo Glucose Measurements. ACS Sensors 2020, 5 (6), 1777-1785.
19. Updike, S. J.; Hicks, G. P. The Enzyme Electrode. Nature 1967, 214 (5092), 986-988
20. Wei, M.; Qiao, Y.; Zhao, H.; Liang, J.; Li, T.; Luo, Y.; Lu, S.; Shi, X.; Lu, W.; Sun, X. Electrochemical non-enzymatic glucose sensors: recent progress and perspectives. Chemical Communications 2020, 56 (93), 14553-14569
21. Ferri, S.; Kojima, K.; Sode, K. Review of Glucose Oxidases and Glucose Dehydrogenases: A Bird's Eye View of Glucose Sensing Enzymes. Journal of Diabetes Science and Technology 2011, 5 (5), 1068-1076.
22. D'Costa, E. J.; Higgins, I. J.; Turner, A. P. Quinoprotein glucose dehydrogenase and its application in an amperometric glucose sensor. Biosensors 1986, 2 (2), 71-87.
23. Glucose Oxidase (EC#: 1.1.3.4). URL: https://reurl.cc/Ye968x
24. Karyakin, A. A.; Gitelmacher, O. V.; Karyakina, E. E. Prussian Blue-Based First-Generation Biosensor. A Sensitive Amperometric Electrode for Glucose. Analytical Chemistry 1995, 67 (14), 2419-2423.
25. Clark, L. C.; Lyons, C. ELECTRODE SYSTEMS FOR CONTINUOUS MONITORING IN CARDIOVASCULAR SURGERY. Annals of the New York Academy of Sciences 2006, 102 (1), 29-45.
26. Liu, J.; Wang, J. A novel improved design for the first-generation glucose biosensor. Food technology and biotechnology 2001, 39 (1), 55-58.
27. Adeel, M.; Rahman, M. M.; Caligiuri, I.; Canzonieri, V.; Rizzolio, F.; Daniele, S. Recent advances of electrochemical and optical enzyme-free glucose sensors operating at physiological conditions. Biosensors and Bioelectronics 2020, 165, 112331.
28. Frew, J. E.; Hill, H. A. O. Electrochemical biosensors. Analytical chemistry 1987, 59 (15), 933A-944A.
29. Tee, S. Y.; Teng, C. P.; Ye, E. Metal nanostructures for non-enzymatic glucose sensing. Materials Science and Engineering: C 2017, 70, 1018-1030.
30. Bollella, P.; Gorton, L.; Ludwig, R.; Antiochia, R. A Third Generation Glucose Biosensor Based on Cellobiose Dehydrogenase Immobilized on a Glassy Carbon Electrode Decorated with Electrodeposited Gold Nanoparticles: Characterization and Application in Human Saliva. Sensors 2017, 17 (8), 1912.
31. Chen, C.; Xie, Q.; Yang, D.; Xiao, H.; Fu, Y.; Tan, Y.; Yao, S. Recent advances in electrochemical glucose biosensors: A review. RSC Advances 2013, 3 (14), 4473-4491, Review.
32. Ren, S.; Li, C.; Jiao, X.; Jia, S.; Jiang, Y.; Bilal, M.; Cui, J. Recent progress in multienzymes co-immobilization and multienzyme system applications. Chemical Engineering Journal 2019, 373, 1254-1278.
33. Casella, I. G.; Contursi, M.; Toniolo, R. A Non-Enzymatic Carbohydrate Sensor Based on Multiwalled Carbon Nanotubes Modified with Adsorbed Active Gold Particles. Electroanalysis 2014, 26 (5), 988-995.
34. Salimi, A.; Roushani, M. Non-enzymatic glucose detection free of ascorbic acid interference using nickel powder and nafion sol–gel dispersed renewable carbon ceramic electrode. Electrochemistry Communications 2005, 7 (9), 879-887.
35. Huang, J.; Dong, Z.; Li, Y.; Li, J.; Wang, J.; Yang, H.; Li, S.; Guo, S.; Jin, J.; Li, R. High performance non-enzymatic glucose biosensor based on copper nanowires–carbon nanotubes hybrid for intracellular glucose study. Sensors and Actuators B: Chemical 2013, 182, 618-624.
36. Espro, C.; Marini, S.; Giusi, D.; Ampelli, C.; Neri, G. Non-enzymatic screen printed sensor based on Cu2O nanocubes for glucose determination in bio-fermentation processes. Journal of Electroanalytical Chemistry 2020, 873, 114354.
37. Li, M.; Han, C.; Zhang, Y.; Bo, X.; Guo, L. Facile synthesis of ultrafine Co3O4 nanocrystals embedded carbon matrices with specific skeletal structures as efficient non-enzymatic glucose sensors. Analytica Chimica Acta 2015, 861, 25-35.
38. Mohapatra, J.; Ananthoju, B.; Nair, V.; Mitra, A.; Bahadur, D.; Medhekar, N. V.; Aslam, M. Enzymatic and non-enzymatic electrochemical glucose sensor based on carbon nano-onions. Applied Surface Science 2018, 442, 332-341.
39. Sridara, T.; Upan, J.; Saianand, G.; Tuantranont, A.; Karuwan, C.; Jakmunee, J. Non-Enzymatic Amperometric Glucose Sensor Based on Carbon Nanodots and Copper Oxide Nanocomposites Electrode. Sensors 2020, 20 (3), 808.
40. Lian, X.; Fang, Y.; Joseph, E.; Wang, Q.; Li, J.; Banerjee, S.; Lollar, C.; Wang, X.; Zhou, H.-C. Enzyme–MOF (metal–organic framework) composites. Chemical Society Reviews 2017, 46 (11), 3386-3401.
41. Kim, S.; Lee, C.-W. A Review on Manufacturing and Application of Open-cell Metal Foam. Procedia Materials Science 2014, 4, 305-309.
42. Evans, A. G.; Hutchinson, J. W.; Ashby, M. F. Multifunctionality of cellular metal systems. Progress in Materials Science 1998, 43 (3), 171-221.
43. Sathurusinghe, P.; Herath, K.; Herath, S. Elastic properties of open cell metallic foams using finite element analysis and homogenization technique; 2012.
44. Zhu, W.; Zhang, R.; Qu, F.; Asiri, A. M.; Sun, X. Design and Application of Foams for Electrocatalysis. ChemCatChem 2017, 9 (10), 1721-1743.
45. Raoof, J.-B.; Ojani, R.; Kiani, A.; Rashid-Nadimi, S. Fabrication of highly porous Pt coated nanostructured Cu-foam modified copper electrode and its enhanced catalytic ability for hydrogen evolution reaction. International Journal of Hydrogen Energy 2010, 35 (2), 452-458.
46. Tang, Y.-J.; Wang, Y.; Zhu, H.-J.; Zhou, K.; Lan, Y.-Q. In situ growth of a POMOF-derived nitride based composite on Cu foam to produce hydrogen with enhanced water dissociation kinetics. Journal of Materials Chemistry A 2019, 7 (22), 13559-13566.
47. Anantharaj, S.; Nagamatsu, T.; Yamaoka, S.; Li, M.; Noda, S. Efficient Methanol Electrooxidation Catalyzed by Potentiostatically Grown Cu–O/OH(Ni) Nanowires: Role of Inherent Ni Impurity, ACS Applied Energy Materials 2022, 5 (1), 419-429.
48. What is Copper Foam? URL: https://reurl.cc/ZWr7lp
49. Gomaa, M. M.; Yazdi, G. R.; Schmidt, S.; Boshta, M.; Khranovskyy, V.; Eriksson, F.; Farag, B. S.; Osman, M. B. S.; Yakimova, R. Effect of precursor solutions on the structural and optical properties of sprayed NiO thin films. Materials Science in Semiconductor Processing 2017, 64, 32-38.
50. Yu, J.; Rosso, K. M.; Bruemmer, S. M. Charge and Ion Transport in NiO and Aspects of Ni Oxidation from First Principles. The Journal of Physical Chemistry C 2012, 116 (2), 1948-1954.
51. Gandhi, A. C.; Pant, J.; Pandit, S. D.; Dalimbkar, S. K.; Chan, T.-S.; Cheng, C.-L.; Ma, Y.-R.; Wu, S. Y. Short-Range Magnon Excitation in NiO Nanoparticles. The Journal of Physical Chemistry C 2013, 117 (36), 18666-18674.
52. Renaud, A.; Chavillon, B.; Cario, L.; Pleux, L. L.; Szuwarski, N.; Pellegrin, Y.; Blart, E.; Gautron, E.; Odobel, F.; Jobic, S. Origin of the Black Color of NiO Used as Photocathode in p-Type Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C 2013, 117 (44), 22478-22483.
53. Wang, L.; Zhang, G.; Liu, Y.; Li, W.; Lu, W.; Huang, H. Facile synthesis of a mechanically robust and highly porous NiO film with excellent electrocatalytic activity towards methanol oxidation. Nanoscale 2016, 8 (21), 11256-11263.
54. Nakate, U. T.; Ahmad, R.; Patil, P.; Yu, Y. T.; Hahn, Y.-B. Ultra thin NiO nanosheets for high performance hydrogen gas sensor device. Applied Surface Science 2020, 506, 144971.
55. Inamdar, A. I.; Kim, Y.; Pawar, S. M.; Kim, J. H.; Im, H.; Kim, H. Chemically grown, porous, nickel oxide thin-film for electrochemical supercapacitors. Journal of Power Sources 2011, 196 (4), 2393-2397.
56. Thema, F. T.; Manikandan, E.; Gurib-Fakim, A.; Maaza, M. Single phase Bunsenite NiO nanoparticles green synthesis by Agathosma betulina natural extract. Journal of Alloys and Compounds 2016, 657, 655-661.
57. Sasaki, S.; Fujino, K.; Tak; Eacute; Uchi, Y. X-Ray Determination of Electron-Density Distributions in Oxides, MgO, MnO, CoO, and NiO, and Atomic Scattering Factors of their Constituent Atoms. Proceedings of the Japan Academy, Series B 1979, 55 (2), 43-48.
58. Allen J. Bard and Larry R. Faulkner, Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 2001, 2nd ed. Russian Journal of Electrochemistry 2002, 38 (12), 1364-1365.
59. Zhang, J.; Zhang, T. a.; Feng, S. Mechanism investigation of α-Ni(OH)2 electrodeposition from a NiCl2 solution. International Journal of Hydrogen Energy 2021, 46 (1), 41-49.
60. Pattadar, D. K.; Masitas, R. A.; Stachurski, C. D.; Cliffel, D. E.; Zamborini, F. P. Reversing the Thermodynamics of Galvanic Replacement Reactions by Decreasing the Size of Gold Nanoparticles. Journal of the American Chemical Society 2020, 142 (45), 19268-19277.
61. Rezaei, B.; Mokhtarianpour, M.; Ensafi, A. A. Fabricated of bimetallic Pd/Pt nanostructure deposited on copper nanofoam substrate by galvanic replacement as an effective electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy 2015, 40 (21), 6754-6762.
62. Cai, H.; Sun, B.; Chen, H.; Li, X.; Suo, H.; Zhao, C. Enhanced electrochemical glucose-sensing properties of NiO nanospheres modified with indium. Journal of Materials Science 2017, 52 (19), 11547-11553.
63. Pasta, M.; La Mantia, F.; Cui, Y. Mechanism of glucose electrochemical oxidation on gold surface. Electrochimica Acta 2010, 55 (20), 5561-5568.
64. Wang, X.; Zhao, M.; Li, H.; Song, Y.; Cheng, Y.; Chen, S. Introducing Schottky interface as a novel strategy for ultrasensitive nonenzymatic glucose detection. Journal of Electroanalytical Chemistry 2017, 801, 251-257.
65. Wei, T.-Y.; Huang, C.-T.; Hansen, B. J.; Lin, Y.-F.; Chen, L.-J.; Lu, S.-Y.; Wang, Z. L. Large enhancement in photon detection sensitivity via Schottky-gated CdS nanowire nanosensors. Applied Physics Letters 2010, 96 (1), 013508.
66. Jia-Lin Sun et al, Metal–insulator transition in Au–NiO–Nidual Schottky nanojunctions. Nanotechnology 2009,20 455203.
67. Thompson, C. V. Solid-State Dewetting of Thin Films. Annual Review of Materials Research 2012, 42 (1), 399-434.
68. Goldstein, J. I.; Newbury, D. E.; Michael, J. R.; Ritchie, N. W.; Scott, J. H. J.; Joy, D. C. Scanning electron microscopy and X-ray microanalysis; Springer, 2017.
69. Mukhopadhyay, A. Measurement Of Magnetic Hysteresis Loops In Continuous And Patterned Ferromagnetic Nanostructures By Static Magneto-Optical Kerr Effect Magnetometer; 2015.
70. Zhou, W.; Apkarian, R.; Wang, Z. L.; Joy, D. Fundamentals of scanning electron microscopy (SEM). Scanning Microscopy for Nanotechnology: Techniques and Applications 2007, 1-40.
71. Corbari, L.; Cambon-Bonavita, M. A.; Long, G. J.; Grandjean, F.; Zbinden, M.; Gaill, F.; Compère, P. Iron oxide deposits associated with the ectosymbiotic bacteria in the hydrothermal vent shrimp. Biogeosciences 2008, 5 (5), 1295-1310.
72. Epp, J. 4-X-ray diffraction (XRD) techniques for materials characterization. In Materials Characterization Using Nondestructive Evaluation (NDE) Methods, Hübschen, G., Altpeter, I., Tschuncky, R., Herrmann, H.-G. Eds.; Woodhead Publishing, 2016; pp 81-124.
73. Liu, Y.; Cao, X.; Jiang, D.; Jia, D.; Liu, J. Hierarchical CuO nanorod arrays in situ generated on three-dimensional copper foam cyclic voltammetry oxidation for high-performance supercapacitors. Journal of Materials Chemistry A 2018, 6 (22), 10474-10483.
74. Wang, S.; Liu, X.; Xu, X.; Fan, C.; Xiao, Q.; Zhang, Q. In situ growth of flower-like Cu3BiS3 on copper foam for electrocatalyzing hydrogen evolution reaction. Ionics 2021, 27 (4), 1645-1652.
75. Qu, L.-B. Facile Fabrication of Superhydrophobic Copper Foam and Electrospinning Polystyrene Fiber for Combinational Oil–Water Separation. Polymers 2019, 11 (1), 97.
76. NIST Inorganic Crystal Structure Database (ICSD)
URL: https://icsd.nist.gov/guide.html
77. Skoog, D.A. ; Holler, F.J. and Crouch, S.R. (2017) Principal of Instrumental Analysis. 7th Edition, Sunder College Publisher, New York, CH1
78. Jin, J.; Zheng, G.; Ge, Y.; Deng, S.; Liu, W.; Hui, G. A non-enzyme electrochemical qualitative and quantitative analyzing method for glucose, D-fructose, and sucrose utilizing Cu foam material. Electrochimica Acta 2015, 153, 594-601.
79. Bao, C.; Niu, Q.; Cao, X.; Liu, C.; Wang, H.; Lu, W. Ni–Fe hybrid nanocubes: an efficient electrocatalyst for non-enzymatic glucose sensing with a wide detection range. New Journal of Chemistry 2019, 43 (28), 11135-11140.
80. Zhou, Y.; Li, J.; Wang, S.; Zhang, J.; Kang, Z. From MOF membrane to 3D electrode: a new approach toward an electrochemical non-enzymatic glucose biosensor. Journal of Materials Science 2017, 52 (20), 12089-12097.
81. Liu, S.; Hui, K. S.; Hui, K. N. Flower-like Copper Cobaltite Nanosheets on Graphite Paper as High-Performance Supercapacitor Electrodes and Enzymeless Glucose Sensors. ACS Applied Materials & Interfaces 2016, 8 (5), 3258-3267.
82. Xu, J.; Chen, T.; Qiao, X.; Sheng, Q.; Yue, T.; Zheng, J. The hybrid of gold nanoparticles and Ni(OH)2 nanosheet for non-enzymatic glucose sensing in food. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2019, 561, 25-31.
83. Ding, Y.; Liu, Y.; Parisi, J.; Zhang, L.; Lei, Y. A novel NiO–Au hybrid nanobelts based sensor for sensitive and selective glucose detection. Biosensors and Bioelectronics 2011, 28 (1), 393-398.
84. Zhuang, Z.; Su, X.; Yuan, H.; Sun, Q.; Xiao, D.; Choi, M. M. F. An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. The Analyst 2008, 133 (1), 126-132.
85. Xu, H.; Xia, C.; Wang, S.; Han, F.; Akbari, M. K.; Hai, Z.; Zhuiykov, S. Electrochemical non-enzymatic glucose sensor based on hierarchical 3D Co3O4/Ni heterostructure electrode for pushing sensitivity boundary to a new limit. Sensors and Actuators B: Chemical 2018, 267, 93-103.
86. Du, Q.; Liao, Y.; Shi, N.; Sun, S.; Liao, X.; Yin, G.; Huang, Z.; Pu, X.; Wang, J. Facile synthesis of bimetallic metal–organic frameworks on nickel foam for a high performance non-enzymatic glucose sensor. Journal of Electroanalytical Chemistry 2022, 904, 115887.