| 研究生: |
歐星妤 Ou, Hsing-Yu |
|---|---|
| 論文名稱: |
戶外遮蔽設施方位與尺寸對熱舒適影響之研究 A study on the effects of orientation and dimensions of outdoor shading devices on thermal comfort |
| 指導教授: |
林子平
Lin, Tzu-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2021 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 遮蔭政策 、戶外熱舒適 、戶外遮蔽設施 、尺寸及方位 |
| 外文關鍵詞: | shading policy, outdoor thermal comfort, outdoor shading device, orientation, dimension |
| 相關次數: | 點閱:119 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,人們受到氣候變遷及都市熱島效應的影響,極端的高溫情形使各國都開始注重都市中熱的議題,提出遮蔭相關的政策。適當的遮蔭可以提升熱舒適,提供良好的戶外活動空間,並提升人們戶外活動的意願。遮蔽設施的尺度(尺寸及方位)為遮蔽設施下人體熱舒適度的關鍵因素,其直接影響了對日射的遮蔽性,然而過去較少針對台灣的騎樓、迴廊等戶外遮蔽設施的尺度進行熱舒適的研究。因此本研究希望透過熱舒適的模擬,探討戶外遮蔽設施尺度與熱舒適的關係,並找到最適合台灣氣候的遮蔽設施尺度區間,以期能作為政府訂立法規或設計者進行設計的參考。另外也透過實測及模擬工具的比較驗證Ladybug工具的熱舒適模擬準確性及效益。
在研究分析之前,本研究透過日射量實測與Ladybug輻射量模擬成果的比較,驗證了Ladybug的輻射模擬準確性,同時也比較了Ladybug、 RayMan及Tmrt簡算式三種模擬Tmrt的方法,瞭解Ladybug與其他熱舒適模擬方法的差異性,證實Ladybug模擬具準確性及便利性,適合作為模擬遮蔽設施輻射量及熱舒適的工具。
本研究將戶外遮蔽設施分為獨立型及附著型,並以有效寬高比及方位進行遮蔽設施的尺度對熱舒適影響的分析。本研究首先使用Rhino Grasshopper建置遮蔽設施模型,以其環境分析插件Ladybug計算兩種類型遮蔽設施其不同有效寬高比及方位下的PET (Physical Equivalent Temperature),並分析夏季日間的平均PET及不舒適比例(PET>34℃)分布。研究成果顯示,有效寬高比愈小,平均PET愈大,不舒適的比例也愈高。而遮蔽設施之方位對於PET亦有所影響,在獨立型遮蔽設施中,南北向的平均PET及不舒適比例最高而東西向最低,而附著型則是西向最高、北向最低。本研究亦透過迴歸分析得出以有效寬高比為參數的遮蔽設施夏季日間平均PET預估式。所有預估式皆有很高的相關性,代表以單一的尺度參數預測遮蔽設施下的熱舒適可以有很高的準確性。
為了使遮蔽設施與熱舒適的研究成果能廣泛應用於政策及設計實務,本研究將遮蔽設施有效寬高比與PET不舒適比例的成果整理成表格。使用者透過查表的方式能輕易地了解到不同尺度及方位的遮蔽設施的PET舒適比例,政府機關可依據此表訂定符合一定熱舒適標準的尺寸規範,一般的設計者亦可利用此表格評估其設計的遮蔽設施提升熱舒適的效果。本研究亦討論了將遮蔭與熱舒適導入國內政策體系的方式,並提供政策法規及設計的應用範例。
Effective shade can improve outdoor thermal comfort and encourage people to engage in outdoor activities. The orientation and dimensions of shading devices are key factors in the thermal comfort underneath, however rarely discussed in past studies. Therefore, the objective of this research is to understand the relationship between the orientation and dimensions of outdoor shading devices and thermal comfort under Taiwan’s climate to provide references for policy making and design.
This research applies the Ladybug tool to calculate the physical equivalent temperature (PET) under various dimensions and orientations of two basic types of outdoor shading devices during summer days. The effect of the dimensions on thermal comfort is evaluated with the effective aspect ratio.
The results show that the smaller the effective aspect ratio, the higher the average PET and the discomfort ratio. The orientation of shading devices also affects PET. In addition, this study finds regression equations for the average PET of shading devices in summer with the effective aspect ratio as a parameter. Moreover, this study organizes the results into a reference table so users can easily understand the PET discomfort ratio of shading devices in different dimensions and orientations.
This research provides valuable information for the government to develop shading policies, assist designers to design comfort shading devices, and predicts thermal comfort levels under shading devices in various dimensions and orientation.
1. Algeciras, J. A. R., & Matzarakis, A. (2016). Quantification of thermal bioclimate for the management of urban design in Mediterranean climate of Barcelona, Spain. International journal of biometeorology, 60(8), 1261-1270.
2. Ali-Toudert, F., & Mayer, H. (2006). Numerical study on the effects of aspect ratio and orientation of an urban street canyon on outdoor thermal comfort in hot and dry climate. Building and Environment, 41(2), 94-108.
3. Australian Radiation Protection and Nuclear Safety Agency(2006). The Radiation Protection Standard for Occupational Exposure to Ultraviolet Radiation.
4. Barcelona City Council (2018). Barcelona Climate Plan 2018-2030.
5. Blazejczyk, K. (2005). MENEX_2005-the updated version of man-environment heat exchange model. In.
6. Cancer Council Victoria(2015). SunSmart Shade Guidelines.
7. Chen, L., & Ng, E. (2012). Outdoor thermal comfort and outdoor activities: A review of research in the past decade. Cities, 29(2), 118-125.
8. Cheng, V., Ng, E., Chan, C., & Givoni, B. (2012). Outdoor thermal comfort study in a sub-tropical climate: a longitudinal study based in Hong Kong. Int J Biometeorol, 56(1), 43-56.
9. Elwy, I., Ibrahim, Y., Fahmy, M., & Mahdy, M. (2018). Outdoor microclimatic validation for hybrid simulation workflow in hot arid climates against ENVI-met and field measurements. Energy Procedia, 153, 29-34.
10. Höppe, P. (1999). The physiological equivalent temperature - a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol, 43, 71-75.
11. Honjo, T. (2009). Thermal Comfort in Outdoor Environment. Global Environmental Research, 13.
12. Hongkong Highways Department(2018). Guidance notes on design of covers for walkways and passenger shelters.
13. Lee, L. S. H., Cheung, P. K., Fung, C. K. W., & Jim, C. Y. (2020). Improving street walkability: Biometeorological assessment of artificial-partial shade structures in summer sunny conditions. Int J Biometeorol, 64(4), 547-560.
14. Lin, T.-P. (2009). Thermal perception, adaptation and attendance in a public square in hot and humid regions. Building and Environment, 44(10), 2017-2026.
15. Lin, T.-P., Matzarakis, A., & Hwang, R.-L. (2010). Shading effect on long-term outdoor thermal comfort. Building and Environment, 45(1), 213-221.
16. Lin, T.-P., Tsai, K.-T., Liao, C.-C., & Huang, Y.-C. (2013). Effects of thermal comfort and adaptation on park attendance regarding different shading levels and activity types. Building and Environment, 59, 599-611.
17. Lin, T. P., & Matzarakis, A. (2008). Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. Int J Biometeorol, 52(4), 281-290.
18. Mackey, C., Galanos, T., Norford, L. K., & Roudsari, M. S. (2017). Wind , Sun , Surface Temperature , and Heat Island : Critical Variables for High-Resolution Outdoor Thermal Comfort.
19. Makaremi, N., Salleh, E., Jaafar, M. Z., & GhaffarianHoseini, A. (2012). Thermal comfort conditions of shaded outdoor spaces in hot and humid climate of Malaysia. Building and Environment, 48, 7-14. https://doi.org/10.1016/j.buildenv.2011.07.024
20. Matzarakis, A., Rutz, F., & Mayer, H. (2007). Modelling radiation fluxes in simple and complex environments—application of the RayMan model. International Journal of Biometeorology, 51(4), 323-334. https://doi.org/10.1007/s00484-006-0061-8
21. Naboni, E., Meloni, M., Coccolo, S., Kaempf, J., & Scartezzini, J.-L. (2017). An overview of simulation tools for predicting the mean radiant temperature in an outdoor space. Energy Procedia, 122, 1111-1116.
22. Nasrollahi, N., Namazi, Y., & Taleghani, M. (2021). The effect of urban shading and canyon geometry on outdoor thermal comfort in hot climates: A case study of Ahvaz, Iran. Sustainable Cities and Society, 65, 102638.
23. Singapore Land Transport Authority(2015). LTA Architectural Design Criteria.
24. Singapore Land Transport Authority & Urban Redevelopment Authority(2018). Walking and Cycling Design Guide.
25. State of Victoria Department of Health(2012). Skin Cancer Prevention Framework 2013-2017.
26. Tel Aviv-Yafo Municipality(2017). The Strategic Plan for Tel Aviv-Yafo: The City Vision.
27. Tel Aviv-Yafo Municipality(2017). Open Space Shade Policy Planning Guidelines.
28. Toronto Cancer Prevention Coalition(2010). Toronto Shade Guidelines.
29. Yang, W., Wong, N. H., & Jusuf, S. K. (2013). Thermal comfort in outdoor urban spaces in Singapore. Building and Environment, 59, 426-435.
30. Yin, S., Lang, W., Xiao, Y., & Xu, Z. (2019). Correlative Impact of Shading Strategies and Configurations Design on Pedestrian-Level Thermal Comfort in Traditional Shophouse Neighbourhoods, Southern China. Sustainability, 11(5).
31. Yu, S.-Y., Matzarakis, A., & Lin, T.-P. (2020). A Study of the Thermal Environment and Air Quality in Hot–Humid Regions during Running Events in Southern Taiwan. Atmosphere, 11(10).
32. New South Wales State (2021) Environmental Planning Policy (Exempt and Complying Development Codes), https://www.planning.nsw.gov.au/Policy-and-Legislation/Exempt-and-complying-development-policy (last access: 2021-12-03)
33. Singapore Land Transport Authority, A More Comfortable Walk to Your Ride by 2018, https://www.lta.gov.sg/content/ltagov/en/newsroom/2015/2/2/a-more-comfortable-walk-to-your-ride-by-2018.html (last access: 2021-12-03)
34. Singapore Urban Redevelopment Authority, 2021, Development Control Guideline, https://www.ura.gov.sg/Corporate/Guidelines/Development-Control/Non-Residential/Commercial/Covered-Walkways (last access: 2021-12-03)
35. 日本環境署,2018,まちなかの暑さ対策ガイドライン。
36. 本サステナブル建築協会(JSBC),2010,CASBEE-HI(ヒートアイランド)評価マニュアル。
37. 何明錦、黃國倉,2013,臺灣建築能源模擬解析用逐時標準氣象資料TMY3之建置與研究,內政部建築研究所協同研究報告。
38. 黃淑靜,2012,不同遮陰形式下戶外空間溫熱環境舒適之研究-以公車候車亭為例。朝陽科技大學建築及都市設計研究所碩士論文。
39. 賴裕鵬、聶志高,2011,台灣街屋與中國廣東騎樓之比較研究:以建築法規對傳統街屋騎樓影響為例,都市與計劃,38(1),73-98。
40. 蘇瑛敏、張惠婷,2017,亞熱帶騎樓形式對於戶外行人舒適度影響之研究,臺灣建築學會建築學報,101,39-58。
41. 內政部建築研究所,2019,綠建築評估手冊-社區類。
42. 台中市政府,2021,台中市新市政中心專用區第五次通盤檢討期中報告(未發佈)。