簡易檢索 / 詳目顯示

研究生: 李珊瑩
Lee, San-Ying
論文名稱: Metformin之腸道運輸與吸收
Intestinal Transport and Absorption of Metformin
指導教授: 周辰熹
Chou, Chen-Hsi
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床藥學研究所
Institute of Clinical Pharmacy
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 98
中文關鍵詞: 降血糖藥物藥物動力學翻轉腸囊小腸吸收metformin
外文關鍵詞: pharmacokinetics, hypoglycemic agent, everted gut sacs, metformin, intestinal absorption
相關次數: 點閱:130下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   Metformin(N,N-dimethylbiguanide, MET)為一廣泛被使用的雙胍類口服降血糖藥物。MET於腸胃道吸收並不完全且吸收過程有飽和的現象。雖然整段腸子皆可吸收MET,且主要的吸收部位在腸道的上段,但是目前對於MET由腸道吸收的詳細機轉仍不清楚。
      因此本研究目的在於利用體外翻轉腸囊(in vitro intestinal everted sac)與大鼠體內口服吸收試驗的方法探討MET於大鼠腸道運輸及體內口服吸收的情形。另外先前本實驗室已證實靜脈注射與靜脈輸注MET於大鼠體內有代謝物M5生成,然而文獻卻尚未於其他物種體內發現有代謝物M5的形成。因此本實驗亦於家兔身上靜脈注射MET以探討MET於不同物種間體內動態的差異,並觀察是否有代謝物M5的形成。
      體外翻轉腸囊試驗的結果顯示,MET於腸道的運輸除了被動擴散之外,亦有鈉依存性的載體負責運輸,主要運輸方向為由黏膜層往漿膜層,而在無pH梯度時膽鹽會促進MET由漿膜層往黏膜層方向的運輸。進一步研究顯示OCTN2及GLUT2載體與MET在腸道的運輸有關,而有機陽離子載體(organic cation transporter,OCT)、intestinal peptide transporter 1(PEPT1)、SGLT1則與MET於腸道的運輸無關。
      以不同口服劑量投與老鼠體內,發現隨著劑量的增加,MET的吸收有飽和的現象,且有代謝物M5的形成。靜脈注射MET於家兔體內亦發現有此代謝物形成,而且不論是MET或M5在家兔體內,當投予劑量增加時血中濃度曲線下面積均呈現非比例的增加,而清除率則有下降的情形,呈現出飽和的現象。可能是因為MET主要經由腎小管主動分泌排除,所以在高劑量之下,MET飽和了這個作用因而使得清除率下降、血中濃度曲線下面積增加。
      由本研究之體內體外實驗結果所得到的結論為MET於大鼠腸道之穿透可能受到OCTN2、GLUT2載體的調控,且腸道內的膽鹽亦可影響其腸道運輸。MET於大鼠之口服吸收有飽和的現象,而MET在家兔體內之藥物動力學則呈現非線性的情形。此外,本研究也證實了MET在大鼠與家兔體內皆有代謝物M5的形成。

      Metformin(N,N-dimethylbiguanide, MET) is an oral biguanide antihyperglycemic agent. The absorption of metformin in gastrointestinal tract is incomplete and saturable. Although metformin can be absorbed from the whole intestine, with the main absorption site in the upper intestine, the detail mechanisms for its intestinal absorption remain unclear.
      The aim of this study is to investigate the intestinal transport mechanism of MET. The in vitro intestinal everted sac preparation was used to examine the transport characteristics and the apparent permeability coefficient of MET. The effects of a variety of drugs on MET transport were also assessed. The in vivo absorption and disposition kinetics of MET and its metabolite M5 were studied in rats following oral administration and in rabbits after intravenous administration, respectively, to explore the dose-linearity.
      The results of in vitro studies showed that besides passive diffusion, there were Na+-dependent transporters involved in transporting MET, with the polarity of transport from mucosa side to serosa side. In the absence of proton gradient, taurodeoxycholic acid facilitated the efflux of MET from serosa side to mucosa side. Further studies with typical substrates and inhibitors of various transporters suggested that OCTN2 and GLUT2, but not OCT1, PEPT1 and SGLT1, may be involved in the intestinal transport of MET.
      Following oral administration, the apparent oral clearance of MET increased with increasing dose, indicating that the absorption was saturable. The pharmacokinetics of MET and its metabolite M5 in rabbits after intravenous administration displayed nonlinearity, as shown by the disproportional increases in the AUC of both MET and M5 with increasing dose. Because MET is mainly excreted by active renal tubular secretion, the disproportionality in AUC and hence clearance of MET might be due to saturation of the secretion process.
      In conclusion, the intestinal transport of MET was probably mediated by OCTN2 and GLUT2, and taurodeoxycholic acid can increase the efflux of MET. Oral absorption of MET in rats was dose-dependent. The disposition kinetics of MET and its metabolite M5 in rabbits were nonlinear. The metabolite M5 of MET can be found in rats and rabbits.

    中文摘要 I 英文摘要 III 誌謝 V 目錄 VI 圖目錄 XI 表目錄 XIII 表目錄 XIII 縮寫表 XIV 第壹章 緒論 1 第一節 Metformin簡介 1 一、Metformin的物理化學和藥物動力學性質 1 二、作用機轉 3 三、副作用 3 四、交互作用與禁忌症 4 第二節 Metformin在體內之運輸 4 第三節 腸道運輸載體 6 一、有機陽離子載體 6 (A)有機陽離子載體的分布、運輸與作用 7 (B)有機陽離子在小腸的運輸 9 二、Peptide transporter 10 三、葡萄糖於腸道之運輸 11 第貳章 研究目的 20 第一節 體外翻轉腸囊試驗 20 一、試驗製備之確認 20 二、Metformin腸道運輸之抑制試驗(inhibition study) 20 三、Metformin腸道運輸之pH依存性(pH-dependency of transport)試驗 21 四、Metformin腸道運輸之鈉依存性(Na-dependency of transport)試驗 21 五、Metformin腸道運輸之淨運輸方向(polarity of transport) 21 第二節 Metformin在大鼠體內口服吸收試驗 21 第三節 Metformin在家兔之體內動態 21 第參章 實驗材料、儀器及方法 23 第一節 實驗材料 23 一、實驗動物 23 二、藥品與試劑 23 (A)藥品 23 (B)試劑 25 (C)物品 25 第二節 實驗儀器 25 一、體外翻轉腸囊實驗 25 二、頸靜脈插管手術用具及器材 25 三、Metformin在家兔體體內之動態 26 四、高壓液相層析系統 (HPLC system) 26 五、其他 27 第三節 實驗方法 28 一、體外翻轉腸囊實驗 28 (A)術前準備 28 (B)實驗步驟 28 二、Metformin在大鼠體內口服吸收試驗 29 (A)術前準備 29 (B)實驗步驟 29 三、Metformin在家兔之體內動態試驗 30 (A)術前準備 30 (B)實驗步驟 30 四、實驗設計 31 (A)體外翻轉腸囊試驗 31 (B)Metformin在大鼠體內口服吸收試驗 33 (C)Metformin在家兔之體內動態試驗 33 五、樣品處理 34 (A)樣品前處理 34 (B)高壓液相層析系統條件 34 (C)校正曲線之配製 35 六、數據分析 35 第肆章 實驗結果 38 第一節 藥品定量分析 38 一、高壓液相層析圖譜 38 第二節 體外翻轉腸囊試驗 38 一、試驗製備之確認 38 二、校正曲線 39 三、抑制試驗(inhibition study) 39 四、pH依存性(pH-dependency of transport)試驗 40 五、鈉依存性(Na-dependency of transport)試驗 41 六、淨運輸方向(polarity of transport) 42 第三節 Metformin在大鼠體內口服吸收試驗 61 一、校正曲線 61 二、經時變化圖 61 三、藥物動力學參數 61 第四節 Metformin在家兔之體內動態試驗 67 一、校正曲線 67 二、經時變化圖 67 三、藥物動力學參數 67 第伍章 討論 73 第一節 體外翻轉腸囊試驗 73 一、試驗製備之確認 73 二、抑制試驗(inhibition study) 73 (A)有機陽離子載體對Metformin於腸道運輸之影響 74 (B)PEPT1對Metformin於腸道運輸之影響 74 (C)Carnitine對Metformin於腸道運輸之影響 75 (D)葡萄糖載體受質與抑制劑對Metformin於腸道運輸之影響 75 (E)Phenformin對Metformin於腸道運輸之影響 76 (F)膽鹽對Metformin於腸道運輸之影響 77 三、pH依存性(pH-dependency of transport)試驗 77 四、鈉依存性(Na-dependency of transport)試驗 78 五、淨運輸方向(polarity of transport) 79 第二節 Metformin在大鼠體內口服吸收試驗 80 第三節 Metformin在家兔之體內動態試驗 82 第六章 結論 84 參考文獻 86

    Aschenbach, J. R., Borau, T., and Gabel, G. (2002). Glucose uptake via SGLT-1 is stimulated by beta(2)-adrenoceptors in the ruminal epithelium of sheep. J Nutr 132, 1254-7.

    Babich, M. M., Pike, I., and Shiffman, M. L. (1998). Metformin-induced acute hepatitis. Am J Med 104, 490-2.

    Bailey, C. J., and Turner, R. C. (1996). Metformin. N Engl J Med 334, 574-9.

    Busch, A. E., Karbach, U., Miska, D., Gorboulev, V., Akhoundova, A., Volk, C., Arndt, P., Ulzheimer, J. C., Sonders, M. S., Baumann, C., Waldegger, S., Lang, F., and Koepsell, H. (1998). Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol Pharmacol 54, 342-52.

    Caspary, W. F., and Creutzfeldt, W. (1971). Analysis of the inhibitory effect of biguanides on glucose absorption: inhibition of active sugar transport. Diabetologia 7, 379-85.

    Cheeseman, C. I., and Maenz, D. D. (1989). Rapid regulation of D-glucose transport in basolateral membrane of rat jejunum. Am J Physiol 256, G878-83.
    Chen, X. Z., Zhu, T., Smith, D. E., and Hediger, M. A. (1999). Stoichiometry and kinetics of the high-affinity H+-coupled peptide transporter PepT2. J Biol Chem 274, 2773-9.

    Cheng, C. L., and Chou, C. H. (2001). Determination of metformin in human plasma by high-performance liquid chromatography with spectrophotometric detection. J Chromatogr B Biomed Sci Appl 762, 51-8.

    Davidson, M. B., and Peters, A. L. (1997). An overview of metformin in the treatment of type 2 diabetes mellitus. Am J Med 102, 99-110.

    Desilets, D. J., Shorr, A. F., Moran, K. A., and Holtzmuller, K. C. (2001). Cholestatic jaundice associated with the use of metformin. Am J Gastroenterol 96, 2257-8.

    Di Paolo, S. (1992). Metformin ameliorates extreme insulin resistance in a patient with anti-insulin receptor antibodies: description of insulin receptor and postreceptor effects in vivo and in vitro. Acta Endocrinol (Copenh) 126, 117-23.

    Doring, F., Will, J., Amasheh, S., Clauss, W., Ahlbrecht, H., and Daniel, H. (1998). Minimal molecular determinants of substrates for recognition by the intestinal peptide transporter. J Biol Chem 273, 23211-8.

    Elimrani, I., Lahjouji, K., Seidman, E., Roy, M. J., Mitchell, G. A., and Qureshi, I. (2003). Expression and localization of organic cation/carnitine transporter OCTN2 in Caco-2 cells. Am J Physiol Gastrointest Liver Physiol 284, G863-71.

    Fei, Y. J., Kanai, Y., Nussberger, S., Ganapathy, V., Leibach, F. H., Romero, M. F., Singh, S. K., Boron, W. F., and Hediger, M. A. (1994). Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature 368, 563-6.

    Ganapathy, M. E., Huang, W., Rajan, D. P., Carter, A. L., Sugawara, M., Iseki, K., Leibach, F. H., and Ganapathy, V. (2000). beta-lactam antibiotics as substrates for OCTN2, an organic cation/carnitine transporter. J Biol Chem 275, 1699-707.

    Gardner, M. L., and Langlow, D. R. (1977). The absorption of phenformin and its effects on glucose and water absorption in isolated perfused rat small intestine. Q J Exp Physiol Cogn Med Sci 62, 247-55.

    Goo, A. K., Carson, D. S., and Bjelajac, A. (1996). Metformin: a new treatment option for non-insulin-dependent diabetes mellitus. J Fam Pract 42, 612-8.

    Grundemann, D., Babin-Ebell, J., Martel, F., Ording, N., Schmidt, A., and Schomig, E. (1997). Primary structure and functional expression of the apical organic cation transporter from kidney epithelial LLC-PK1 cells. J Biol Chem 272, 10408-13.

    Grundemann, D., Gorboulev, V., Gambaryan, S., Veyhl, M., and Koepsell, H. (1994). Drug excretion mediated by a new prototype of polyspecific transporter. Nature 372, 549-52.

    Holstein, A., Nahrwold, D., Hinze, S., and Egberts, E. H. (1999). Contra-indications to metformin therapy are largely disregarded. Diabet Med 16, 692-6.

    Hother-Nielsen, O., Schmitz, O., Andersen, P. H., Beck-Nielsen, H., and Pedersen, O. (1989). Metformin improves peripheral but not hepatic insulin action in obese patients with type II diabetes. Acta Endocrinol (Copenh) 120, 257-65.

    Jayasagar, G., Krishna Kumar, M., Chandrasekhar, K., Madhusudan Rao, C., and Madhusudan Rao, Y. (2002). Effect of cephalexin on the pharmacokinetics of metformin in healthy human volunteers. Drug Metabol Drug Interact 19, 41-8.

    Johnson, A. B., Webster, J. M., Sum, C. F., Heseltine, L., Argyraki, M., Cooper, B. G., and Taylor, R. (1993). The impact of metformin therapy on hepatic glucose production and skeletal muscle glycogen synthase activity in overweight type II diabetic patients. Metabolism 42, 1217-22.

    Jonker, J. W., and Schinkel, A. H. (2004). Pharmacological and physiological functions of the polyspecific organic cation transporters: OCT1, 2, and 3 (SLC22A1-3). J Pharmacol Exp Ther 308, 2-9.

    Katsura, T., and Inui, K. (2003). Intestinal Absorption of Drug Mediated by Drug Transporters: Mechanisms and Regulation. Drug Metab. Pharmacokin. 18, 1-15.

    Kekuda, R., Prasad, P. D., Wu, X., Wang, H., Fei, Y. J., Leibach, F. H., and Ganapathy, V. (1998). Cloning and functional characterization of a potential-sensitive, polyspecific organic cation transporter (OCT3) most abundantly expressed in placenta. J Biol Chem 273, 15971-9.

    Koepsell, H. (1998). Organic cation transporters in intestine, kidney, liver, and brain. Annu Rev Physiol 60, 243-66.

    Koepsell, H., and Endou, H. (2004). The SLC22 drug transporter family. Pflugers Arch 447, 666-76.

    Koepsell, H., Schmitt, B. M., and Gorboulev, V. (2003). Organic cation transporters. Rev Physiol Biochem Pharmacol 150, 36-90.
    Kusuhara, H., and Sugiyama, Y. (2002). Drug-drug interactions involving the membrane transport process. In "Drug-drug interactions" (A. Rodrigues, ed.), pp. 123-188. Marcel Dekker, Inc., New York.

    Lalau, J. D., and Race, J. M. (2001). Lactic acidosis in metformin therapy: searching for a link with metformin in reports of 'metformin-associated lactic acidosis'. Diabetes Obes Metab 3, 195-201.

    Lorch, E. (1971). Inhibition of intestinal absorption and improvement of oral glucose tolerance by biguanides in the normal and in the streptozotocin-diabetic rat. Diabetologia 7, 195-203.

    McIntyre, H. D., Ma, A., Bird, D. M., Paterson, C. A., Ravenscroft, P. J., and Cameron, D. P. (1991). Metformin increases insulin sensitivity and basal glucose clearance in type 2 (non-insulin dependent) diabetes mellitus. Aust N Z J Med 21, 714-9.

    Melchior, W. R., and Jaber, L. A. (1996). Metformin: an antihyperglycemic agent for treatment of type II diabetes. Ann Pharmacother 30, 158-64.

    Michels, G. M., Boudinot, F. D., Ferguson, D. C., and Hoenig, M. (1999). Pharmacokinetics of the antihyperglycemic agent metformin in cats. Am J Vet Res 60, 738-42.

    Nicholls, T. J., and Leese, H. J. (1984). The effects of phenformin on the transport and metabolism of sugars by the rat small intestine. Biochem Pharmacol 33, 771-7.

    Nicklin, P., Keates, A.C., Page, T., Bailey, C.J. (1996). Transfer of metformin across monolayers of human intestinal Caco-2 cells and across rat intestine. International Journal of Pharmaceutics 128, 155-62.

    Ogihara, H., Saito, H., Shin, B. C., Terado, T., Takenoshita, S., Nagamachi, Y., Inui, K., and Takata, K. (1996). Immuno-localization of H+/peptide cotransporter in rat digestive tract. Biochem Biophys Res Commun 220, 848-52.

    Ohashi, R., Tamai, I., Inano, A., Katsura, M., Sai, Y., Nezu, J., and Tsuji, A. (2002). Studies on functional sites of organic cation/carnitine transporter OCTN2 (SLC22A5) using a Ser467Cys mutant protein. J Pharmacol Exp Ther 302, 1286-94.

    Ohashi, R., Tamai, I., Yabuuchi, H., Nezu, J. I., Oku, A., Sai, Y., Shimane, M., and Tsuji, A. (1999). Na(+)-dependent carnitine transport by organic cation transporter (OCTN2): its pharmacological and toxicological relevance. J Pharmacol Exp Ther 291, 778-84.

    Okuda, M., Saito, H., Urakami, Y., Takano, M., and Inui, K. (1996). cDNA cloning and functional expression of a novel rat kidney organic cation transporter, OCT2. Biochem Biophys Res Commun 224, 500-7.

    Pentikainen, P. J., Neuvonen, P. J., and Penttila, A. (1979). Pharmacokinetics of metformin after intravenous and oral administration to man. Eur J Clin Pharmacol 16, 195-202.

    Philpott, D. J., Butzner, J. D., and Meddings, J. B. (1992). Regulation of intestinal glucose transport. Can J Physiol Pharmacol 70, 1201-7.

    Robert, F., Fendri, S., Hary, L., Lacroix, C., Andrejak, M., and Lalau, J. D. (2003). Kinetics of plasma and erythrocyte metformin after acute administration in healthy subjects. Diabetes Metab 29, 279-83.

    Ruggiero-Lopez, D., Lecomte, M., Moinet, G., Patereau, G., Lagarde, M., and Wiernsperger, N. (1999). Reaction of metformin with dicarbonyl compounds. Possible implication in the inhibition of advanced glycation end product formation. Biochem Pharmacol 58, 1765-73.

    Salpeter, S. R., Greyber, E., Pasternak, G. A., and Salpeter, E. E. (2003). Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus: systematic review and meta-analysis. Arch Intern Med 163, 2594-602.

    Sambol, N. C., Chiang, J., O'Conner, M., Liu, C. Y., Lin, E. T., Goodman, A. M., Benet, L. Z., and Karam, J. H. (1996). Pharmacokinetics and pharmacodynamics of metformin in healthy subjects and patients with noninsulin-dependent diabetes mellitus. J Clin Pharmacol 36, 1012-21.

    Seth, P., Wu, X., Huang, W., Leibach, F. H., and Ganapathy, V. (1999). Mutations in novel organic cation transporter (OCTN2), an organic cation/carnitine transporter, with differential effects on the organic cation transport function and the carnitine transport function. J Biol Chem 274, 33388-92.

    Sirtori, C. R., Franceschini, G., Galli-Kienle, M., Cighetti, G., Galli, G., Bondioli, A., and Conti, F. (1978). Disposition of metformin (N,N-dimethylbiguanide) in man. Clin Pharmacol Ther 24, 683-93.

    Smith, D. E., Pavlova, A., Berger, U. V., Hediger, M. A., Yang, T., Huang, Y. G., and Schnermann, J. B. (1998). Tubular localization and tissue distribution of peptide transporters in rat kidney. Pharm Res 15, 1244-9.

    Somogyi, A., Stockley, C., Keal, J., Rolan, P., and Bochner, F. (1987). Reduction of metformin renal tubular secretion by cimetidine in man. Br J Clin Pharmacol 23, 545-51.

    Song, I. S., Han, Y. H., Chung, S. J., and Shim, C. K. (2003). Contribution of ion-pair complexation with bile salts to the transport of organic cations across LLC-PK1 cell monolayers. Pharm Res 20, 597-604.

    Steel, A., Nussberger, S., Romero, M. F., Boron, W. F., Boyd, C. A., and Hediger, M. A. (1997). Stoichiometry and pH dependence of the rabbit proton-dependent oligopeptide transporter PepT1. J Physiol 498 ( Pt 3), 563-9.

    Sulkin, T. V., Bosman, D., and Krentz, A. J. (1997). Contraindications to metformin therapy in patients with NIDDM. Diabetes Care 20, 925-8.

    Tamai, I., Ohashi, R., Nezu, J., Yabuuchi, H., Oku, A., Shimane, M., Sai, Y., and Tsuji, A. (1998). Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J Biol Chem 273, 20378-82.

    Tamai, I., Ohashi, R., Nezu, J. I., Sai, Y., Kobayashi, D., Oku, A., Shimane, M., and Tsuji, A. (2000). Molecular and functional characterization of organic cation/carnitine transporter family in mice. J Biol Chem 275, 40064-72.

    Tamai, I., Yabuuchi, H., Nezu, J., Sai, Y., Oku, A., Shimane, M., and Tsuji, A. (1997). Cloning and characterization of a novel human pH-dependent organic cation transporter, OCTN1. FEBS Lett 419, 107-11.

    Tirona, R., and Kim, R. (2002). Pharmacogenomics of Drug Transporters. In "Pharmacogenomics. The Search for Individulized Therapies" (J. Licinio and M. Wong, eds.), pp. 179-213. WILEY-VCH Verlag GmbH, Germany.

    Tomei, S., Hayashi, Y., Inoue, K., Torimoto, M., Ota, Y., Morita, K., Yuasa, H., and Watanabe, J. (2003). Search for carrier-mediated transport systems in the rat colon. Biol Pharm Bull 26, 274-7.

    Tsuji, A., and Tamai, I. (1996). Carrier-mediated intestinal transport of drugs. Pharm Res 13, 963-77.

    Tucker, G. T., Casey, C., Phillips, P. J., Connor, H., Ward, J. D., and Woods, H. F. (1981). Metformin kinetics in healthy subjects and in patients with diabetes mellitus. Br J Clin Pharmacol 12, 235-46.

    Vidon, N., Chaussade, S., Noel, M., Franchisseur, C., Huchet, B., and Bernier, J. J. (1988). Metformin in the digestive tract. Diabetes Res Clin Pract 4, 223-9.

    Wang, D. S., Jonker, J. W., Kato, Y., Kusuhara, H., Schinkel, A. H., and Sugiyama, Y. (2002). Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J Pharmacol Exp Ther 302, 510-5.

    Wiithrich, R. (2000). The urine system. In "The laboratory rat" (G. Krinke, ed.), pp. 385-400. Academic Press, London.

    Wilcock, C., and Bailey, C. J. (1994). Accumulation of metformin by tissues of the normal and diabetic mouse. Xenobiotica 24, 49-57.

    Wingate, D. L., and Hadley, G. D. (1973). Effect of phenformin on water and glucose transport across isolated human ileum. Diabetes 22, 175-9.

    Wu, X., Huang, W., Prasad, P. D., Seth, P., Rajan, D. P., Leibach, F. H., Chen, J., Conway, S. J., and Ganapathy, V. (1999). Functional characteristics and tissue distribution pattern of organic cation transporter 2 (OCTN2), an organic cation/carnitine transporter. J Pharmacol Exp Ther 290, 1482-92.

    Zhang, L., Brett, C. M., and Giacomini, K. M. (1998). Role of organic cation transporters in drug absorption and elimination. Annu Rev Pharmacol Toxicol 38, 431-60.

    Zhang, L., Dresser, M. J., Chun, J. K., Babbitt, P. C., and Giacomini, K. M. (1997a). Cloning and functional characterization of a rat renal organic cation transporter isoform (rOCT1A). J Biol Chem 272, 16548-54.

    Zhang, L., Dresser, M. J., Gray, A. T., Yost, S. C., Terashita, S., and Giacomini, K. M. (1997b). Cloning and functional expression of a human liver organic cation transporter. Mol Pharmacol 51, 913-21.

    下載圖示 校內:2010-01-25公開
    校外:2011-01-25公開
    QR CODE