| 研究生: |
侯佳成 Hou, Chia-Cheng |
|---|---|
| 論文名稱: |
研究PLGA奈米粒子包裹小分子抑制藥物增強細胞死亡相關之機轉 Study the mechanisms underlying the cell death enhancement by loading small molecule inhibitors into PLGA nanoparticles |
| 指導教授: |
蘇五洲
Su, Wu-Chou 謝達斌 Shieh, Dar-Bin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 2-嗎啉-4-基-8-苯基-4H-色烯-4-酮 、無表面活性劑聚乳酸聚乙醇酸共聚物 、內質網壓力 、含纈酪肽蛋白 |
| 外文關鍵詞: | LY294002, surfactant-free PLGA, ER stress, VCP |
| 相關次數: | 點閱:149 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
LY294002 (LY, 2-嗎啉-4-基-8-苯基-4H-色烯-4-酮)是一種有效抑制磷脂醯肌醇3-激酶(phosphatidylinositol 3-kinases, PI3Ks)的小分子抑制劑,但是,微水溶性與低劣的藥物代謝動力學特性則是侷限LY在生物體上的應用。聚乳酸聚乙醇酸共聚物(poly(lactic-co-glycolic acid), PLGA)是一種可生物降解的奈米材料,可以用來作為載體用於藥物傳遞。 因此,我們發展出LY294002包覆於無表面活性劑的PLGA奈米粒子(LY294002-loaded surfactant-free PLGA nanoparticles, SF-LY NPs)並研究是否該奈米粒子可以改善LY的療效。 SF-LY NPs,相較於LY294002包覆於表面活性劑聚乙烯醇(polyvinyl alcohol, PVA) 的奈米粒子(LY294002-loaded PVA -containing PLGA nanoparticles, PVA-LY NPs) 以及 LY,則表現出優越的抑制細胞生長效果、持續抑制絲氨酸/蘇氨酸激酶 (蛋白激酶B) (protein kinase B, AKT)的活性以及增加LY在細胞內的含量。此外,我們觀察到SF-LY NPs傾向於積累在內質網 (endoplasmic reticulum, ER),並誘發顯著的內質網壓力(ER stress)反應所衍生的細胞死亡機制。將SF-LY NPs注射到腫瘤後也表現抗腫瘤的作用。在SF-LY NPs誘導的細胞死亡機制,我們建立了能定位在不同胞器中的PLGA奈米粒子,並發現到位於內質網中的SF-LY NPs能促使細胞死亡。此外,我們也觀察到諸多現象,如,內質網衍生空泡化 (ER-derived vacuolization) 和泛素高度聚集的聚集小體 (aggresomes)。接下來,我們發現含纈酪肽蛋白(Valosin-containing protein, VCP)是重要的因子,其能減緩SF-LY NPs誘導的諸多細胞現象和細胞死亡。這些研究結果表明,SF-LY NPs通過PI3K/AKT和VCP相關機制導致細胞死亡並具有發展成抗癌藥物的潛力。
LY294002 (LY) is a potent inhibitor of phosphatidylinositol 3-kinases (PI3Ks); however, bio-applications of LY are limited by its poor solubility and pharmacokinetic profile. Poly (lactic-co-glycolic acid) (PLGA) is a biodegradable nanomaterial that can be used as a carrier for drug delivery. LY294002-loaded surfactant-free PLGA nanoparticles (SF-LY NPs) were developed to improve the therapeutic efficacy of LY. SF-LY NPs showed a stronger growth inhibitory effect, sustained suppression of the serine/threonine kinase AKT activation, and increased intracellular uptake of LY compared with LY294002-loaded PVA (polyvinyl alcohol) -containing PLGA nanoparticles (PVA-LY NPs) or free LY. In addition, we observed that SF-LY NPs tend to accumulate in the endoplasmic reticulum (ER), subsequently induced pronounced ER stress-derived cell death. After injection into tumors, SF-LY NPs exhibited a stronger antitumor effect than free LY. In cell death mechanisms of SF-LY NPs, we developed different organelle-targeting PLGA NPs with LY entrapment and found that SF-LY NPs preferentially located at ER to determine cell fate, rather than the properties of PLGA NPs. Furthermore, PLGA NPs with LY loading, located at ER, exhibited multiple cellular phenomena, such as, ER-derived vacuolization and ubiquitin-concentrated aggresomes. Next, we identified that vasolin-containing protein (VCP) rescued SF-LY NPs -induced multiple cellular phenomena and was critical for SF-LY NPs -mediated cell death. These findings indicated that the surfactant-free formulation of PLGA is an ideal vector to carry LY and that SF-LY NPs possess promising anticancer activity via both PI3K/AKT and VCP -related mechanisms.
Acharya, S. and S. K. Sahoo (2011). "PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect." Adv Drug Deliv Rev 63(3): 170-83.
Anon, A. (2004). "Nanomedicine -- a tremendous research opportunity for analytical chemists." Analyst 129(8): 671.
Arshady, R. (1991). "Preparation of biodegradable microspheres and microcapsules: 2. Polyactides and related polyesters " J Control Release 17(1): 1-21.
Avni, D., Y. Glucksam, et al. (2012). "The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 modulates cytokine expression in macrophages via p50 nuclear factor kappaB inhibition, in a PI3K-independent mechanism." Biochem Pharmacol 83(1): 106-14.
Berkland, C., M. King, et al. (2002). "Precise control of PLG microsphere size provides enhanced control of drug release rate." J Control Release 82(1): 137-47.
Bernales, S., K. L. McDonald, et al. (2006). "Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response." PLoS Biol 4(12): e423.
Braun, R. J. and H. Zischka (2008). "Mechanisms of Cdc48/VCP-mediated cell death: from yeast apoptosis to human disease." Biochim Biophys Acta 1783(7): 1418-35.
Breunig, M., S. Bauer, et al. (2008). "Polymers and nanoparticles: intelligent tools for intracellular targeting?" Eur J Pharm Biopharm 68(1): 112-28.
Brodsky, J. L. (2012). "Cleaning up: ER-associated degradation to the rescue." Cell 151(6): 1163-7.
Bruning, A., P. Burger, et al. (2009). "Nelfinavir induces the unfolded protein response in ovarian cancer cells, resulting in ER vacuolization, cell cycle retardation and apoptosis." Cancer Biol Ther 8(3): 226-32.
Brunn, G. J., J. Williams, et al. (1996). "Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002." Embo J 15(19): 5256-67.
Cabane, B., S. Blanchon, et al. (2006). "Recombination of nanometric vesicles during freeze-drying." Langmuir 22(5): 1982-90.
Cartiera, M. S., K. M. Johnson, et al. (2009). "The uptake and intracellular fate of PLGA nanoparticles in epithelial cells." Biomaterials 30(14): 2790-8.
Chang, J. D., G. K. Sukhova, et al. (2007). "Deletion of the phosphoinositide 3-kinase p110gamma gene attenuates murine atherosclerosis." Proc Natl Acad Sci U S A 104(19): 8077-82.
Cheng, F. Y., S. P. Wang, et al. (2008). "Stabilizer-free poly(lactide-co-glycolide) nanoparticles for multimodal biomedical probes." Biomaterials 29(13): 2104-12.
Chien, Y. W. (1982). Novel Drug Delivery System. New York, Marcel Dekker , Inc. ,.
Chou, T. F., S. J. Brown, et al. (2011). "Reversible inhibitor of p97, DBeQ, impairs both ubiquitin-dependent and autophagic protein clearance pathways." Proc Natl Acad Sci U S A 108(12): 4834-9.
Cohen, S., M. J. Alonso, et al. (1994). "Novel approaches to controlled-release antigen delivery." Int J Technol Assess Health Care 10(1): 121-30.
Cozar-Bernal, M. J., M. A. Holgado, et al. (2011). "Insulin-loaded PLGA microparticles: flow focusing versus double emulsion/solvent evaporation." J Microencapsul 28(5): 430-41.
Cubedo, E., L. Cordeu, et al. (2006). "New symmetrical quinazoline derivatives selectively induce apoptosis in human cancer cells." Cancer Biol Ther 5(7): 850-9.
D.H. Lewis, i. M. C., R. Langer (1990). Biodegradabl Polymers as Drug Delivery Systems, Drugs and Pharmaceutical Sciences. New York, Marcel Dekker.
Davies, S. P., H. Reddy, et al. (2000). "Specificity and mechanism of action of some commonly used protein kinase inhibitors." Biochem J 351(Pt 1): 95-105.
Deasy, P. B. (1984). Microencapsulation and related drug Processes. New York, Marcel
Dekker Inc.,.
Demento, S. L., W. Cui, et al. (2012). "Role of sustained antigen release from nanoparticle vaccines in shaping the T cell memory phenotype." Biomaterials.
Dinarvand, R., N. Sepehri, et al. (2011). "Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents." Int J Nanomedicine 6: 877-95.
Du, L., X. Mei, et al. (2011). "In-vitro/in-vivo studies of the biodegradable poly-(D,L-lactide-co-glycolide) microspheres of a novel luteinizing hormone-releasing hormone antagonist for prostate cancer treatment." Anticancer Drugs 22(3): 262-72.
Edelman, R., R. G. Russell, et al. (1993). "Immunization of rabbits with enterotoxigenic E. coli colonization factor antigen (CFA/I) encapsulated in biodegradable microspheres of poly (lactide-co-glycolide)." Vaccine 11(2): 155-8.
Esmaeili, F., M. H. Ghahremani, et al. (2008). "PLGA nanoparticles of different surface properties: preparation and evaluation of their body distribution." Int J Pharm 349(1-2): 249-55.
Ferri, K. F. and G. Kroemer (2001). "Organelle-specific initiation of cell death pathways." Nat Cell Biol 3(11): E255-63.
Fredenberg, S., M. Wahlgren, et al. (2011). "The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems--a review." Int J Pharm 415(1-2): 34-52.
Freiberg, S. and X. X. Zhu (2004). "Polymer microspheres for controlled drug release." Int J Pharm 282(1-2): 1-18.
Fresno Vara, J. A., E. Casado, et al. (2004). "PI3K/Akt signalling pathway and cancer." Cancer Treat Rev 30(2): 193-204.
Garcia-Echeverria, C. and W. R. Sellers (2008). "Drug discovery approaches targeting the PI3K/Akt pathway in cancer." Oncogene 27(41): 5511-26.
Garlich, J. R., P. De, et al. (2008). "A vascular targeted pan phosphoinositide 3-kinase inhibitor prodrug, SF1126, with antitumor and antiangiogenic activity." Cancer Res 68(1): 206-15.
Gaumet, M., R. Gurny, et al. (2009). "Localization and quantification of biodegradable particles in an intestinal cell model: the influence of particle size." Eur J Pharm Sci 36(4-5): 465-73.
Gharbi, S. I., M. J. Zvelebil, et al. (2007). "Exploring the specificity of the PI3K family inhibitor LY294002." Biochem J 404(1): 15-21.
Gilding DM, R. A. (1979). "Biodegradable polymers for use in surgery. Poly(glycolic)/poly(lactic acid) homo and copolymers." Polymers 20: 1459-1464.
Gomez, J. R. G. a. G. (1972). "Depression in general practice : comparison between thrice daily amitriptyline tablets and a single sustained-release capsules at night." Brit. J. Clin. Pract 26: 33-34.
Hanahan, D. and R. A. Weinberg (2011). "Hallmarks of cancer: the next generation." Cell 144(5): 646-74.
Hans, M. L. L., A. M. (2002). "Biodegradable nanoparticles for drug delivery and targeting." Curr. Opin. Solid State Mater. Sci.( 6): 319-327.
Harfouche, R., S. Basu, et al. (2009). "Nanoparticle-mediated targeting of phosphatidylinositol-3-kinase signaling inhibits angiogenesis." Angiogenesis 12(4): 325-38.
Hawker, C. J. and K. L. Wooley (2005). "The convergence of synthetic organic and polymer chemistries." Science 309(5738): 1200-5.
Hayashi, A., H. Wakita, et al. (2007). "A strategy for efficient cross-presentation of CTL-epitope peptides leading to enhanced induction of in vivo tumor immunity." J Control Release 117(1): 11-9.
Hennessy, B. T., D. L. Smith, et al. (2005). "Exploiting the PI3K/AKT pathway for cancer drug discovery." Nat Rev Drug Discov 4(12): 988-1004.
Hirabayashi, M., K. Inoue, et al. (2001). "VCP/p97 in abnormal protein aggregates, cytoplasmic vacuoles, and cell death, phenotypes relevant to neurodegeneration." Cell Death Differ 8(10): 977-84.
Holzer, M., V. Vogel, et al. (2009). "Physico-chemical characterisation of PLGA nanoparticles after freeze-drying and storage." Eur J Pharm Biopharm 72(2): 428-37.
Hosoi, T., K. Hyoda, et al. (2007). "Akt up- and down-regulation in response to endoplasmic reticulum stress." Brain Res 1152: 27-31.
Hu, P., Z. Han, et al. (2004). "Critical role of endogenous Akt/IAPs and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death." J Biol Chem 279(47): 49420-9.
Hyoda, K., T. Hosoi, et al. (2006). "PI3K-Akt inactivation induced CHOP expression in endoplasmic reticulum-stressed cells." Biochem Biophys Res Commun 340(1): 286-90.
Im, G. I., H. J. Kim, et al. (2011). "Chondrogenesis of adipose stem cells in a porous PLGA scaffold impregnated with plasmid DNA containing SOX trio (SOX-5,-6 and -9) genes." Biomaterials 32(19): 4385-92.
Imai, Y., M. Soda, et al. (2001). "An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin." Cell 105(7): 891-902.
Ishigaki, S., N. Hishikawa, et al. (2004). "Physical and functional interaction between Dorfin and Valosin-containing protein that are colocalized in ubiquitylated inclusions in neurodegenerative disorders." J Biol Chem 279(49): 51376-85.
Jacobs, M. D., J. Black, et al. (2005). "Pim-1 ligand-bound structures reveal the mechanism of serine/threonine kinase inhibition by LY294002." J Biol Chem 280(14): 13728-34.
Jalil, R. and J. R. Nixon (1990). "Biodegradable poly(lactic acid) and poly(lactide-co-glycolide) microcapsules: problems associated with preparative techniques and release properties." J Microencapsul 7(3): 297-325.
Jeon, S. Y., J. S. Park, et al. (2012). "Co-delivery of SOX9 genes and anti-Cbfa-1 siRNA coated onto PLGA nanoparticles for chondrogenesis of human MSCs." Biomaterials 33(17): 4413-23.
Johnston, J. A., C. L. Ward, et al. (1998). "Aggresomes: a cellular response to misfolded proteins." J Cell Biol 143(7): 1883-98.
Kitchell, J. P. and D. L. Wise (1985). "Poly(lactic/glycolic acid) biodegradable drug-polymer matrix systems." Methods Enzymol 112: 436-48.
Kiyoyama, S., K. Shiomori, et al. (2003). "Preparation of microcapsules and control of their morphology." J Microencapsul 20(4): 497-508.
Knight, Z. A., B. Gonzalez, et al. (2006). "A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling." Cell 125(4): 733-47.
Knight, Z. A. and K. M. Shokat (2007). "Chemically targeting the PI3K family." Biochem Soc Trans 35(Pt 2): 245-9.
Kobayashi, T., K. Tanaka, et al. (2002). "Functional ATPase activity of p97/valosin-containing protein (VCP) is required for the quality control of endoplasmic reticulum in neuronally differentiated mammalian PC12 cells." J Biol Chem 277(49): 47358-65.
Kroemer, G., G. Marino, et al. (2010). "Autophagy and the integrated stress response." Mol Cell 40(2): 280-93.
Kuo, W. S. K., Y.C.; Sei, H.T.; Cheng, F.Y.; Su, W.C.; Yeh, C.S. (2009). "Paclitaxel-loaded stabilizer-Free poly(D,L-lactide-co-glycolide) nanoparticles conjugated with quantum dots for reversion of anti-cancer drug resistance and cancer cellular imaging.". Chin. Chem. Soc. 56(5): 923-934.
Lee, H., M. T. Park, et al. (2011). "Endoplasmic reticulum stress-induced JNK activation is a critical event leading to mitochondria-mediated cell death caused by beta-lapachone treatment." PLoS One 6(6): e21533.
Lee, J. L., M. J. Wang, et al. (2009). "Acetylation and activation of STAT3 mediated by nuclear translocation of CD44." J Cell Biol 185(6): 949-57.
Li, J., M. Ni, et al. (2008). "The unfolded protein response regulator GRP78/BiP is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells." Cell Death Differ 15(9): 1460-71.
Linder, S. and M. C. Shoshan (2005). "Lysosomes and endoplasmic reticulum: targets for improved, selective anticancer therapy." Drug Resist Updat 8(4): 199-204.
Liu, P., H. Cheng, et al. (2009). "Targeting the phosphoinositide 3-kinase pathway in cancer." Nat Rev Drug Discov 8(8): 627-44.
Liu, Y., H. Miyoshi, et al. (2007). "Nanomedicine for drug delivery and imaging: a promising avenue for cancer therapy and diagnosis using targeted functional nanoparticles." Int J Cancer 120(12): 2527-37.
Luo, B. and A. S. Lee (2013). "The critical roles of endoplasmic reticulum chaperones and unfolded protein response in tumorigenesis and anticancer therapies." Oncogene 32(7): 805-18.
Luoma, P. V. (2013). "Elimination of endoplasmic reticulum stress and cardiovascular, type 2 diabetic, and other metabolic diseases." Ann Med 45(2): 194-202.
Madeo, F., J. Schlauer, et al. (1998). "Tyrosine phosphorylation regulates cell cycle-dependent nuclear localization of Cdc48p." Mol Biol Cell 9(1): 131-41.
Maeda, H. (2010). "Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects." Bioconjug Chem 21(5): 797-802.
Maira, S. M., F. Stauffer, et al. (2008). "Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity." Mol Cancer Ther 7(7): 1851-63.
Markman, B., F. Atzori, et al. (2010). "Status of PI3K inhibition and biomarker development in cancer therapeutics." Ann Oncol 21(4): 683-91.
Marone, R., V. Cmiljanovic, et al. (2008). "Targeting phosphoinositide 3-kinase: moving towards therapy." Biochim Biophys Acta 1784(1): 159-85.
McKinlay, H. S. a. I. (1975). "Poisoning with slow-release fenfluramine." Brit. Med. J 4: 462-463.
Meyer, H. H., Y. Wang, et al. (2002). "Direct binding of ubiquitin conjugates by the mammalian p97 adaptor complexes, p47 and Ufd1-Npl4." Embo J 21(21): 5645-52.
Miaczynska, M. and H. Stenmark (2008). "Mechanisms and functions of endocytosis." J Cell Biol 180(1): 7-11.
Mimnaugh, E. G., W. Xu, et al. (2004). "Simultaneous inhibition of hsp 90 and the proteasome promotes protein ubiquitination, causes endoplasmic reticulum-derived cytosolic vacuolization, and enhances antitumor activity." Mol Cancer Ther 3(5): 551-66.
Mimnaugh, E. G., W. Xu, et al. (2006). "Endoplasmic reticulum vacuolization and valosin-containing protein relocalization result from simultaneous hsp90 inhibition by geldanamycin and proteasome inhibition by velcade." Mol Cancer Res 4(9): 667-81.
Misra, S., V. C. Hascall, et al. (2009). "Delivery of CD44 shRNA/nanoparticles within cancer cells: perturbation of hyaluronan/CD44v6 interactions and reduction in adenoma growth in Apc Min/+ MICE." J Biol Chem 284(18): 12432-46.
Moghimi, S. M., A. C. Hunter, et al. (2001). "Long-circulating and target-specific nanoparticles: theory to practice." Pharmacol Rev 53(2): 283-318.
Moghimi, S. M., A. C. Hunter, et al. (2005). "Nanomedicine: current status and future prospects." Faseb J 19(3): 311-30.
Mura, S., H. Hillaireau, et al. (2011). "Influence of surface charge on the potential toxicity of PLGA nanoparticles towards Calu-3 cells." Int J Nanomedicine 6: 2591-605.
Naor, D., S. Nedvetzki, et al. (2002). "CD44 in cancer." Crit Rev Clin Lab Sci 39(6): 527-79.
Oyadomari, S. and M. Mori (2004). "Roles of CHOP/GADD153 in endoplasmic reticulum stress." Cell Death Differ 11(4): 381-9.
Parveen, S. and S. K. Sahoo (2008). "Polymeric nanoparticles for cancer therapy." J Drug Target 16(2): 108-23.
Patrucco, E., A. Notte, et al. (2004). "PI3Kgamma modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects." Cell 118(3): 375-87.
Paulo, C. S., R. Pires das Neves, et al. (2011). "Nanoparticles for intracellular-targeted drug delivery." Nanotechnology 22(49): 494002.
Poh, T. W. and S. Pervaiz (2005). "LY294002 and LY303511 sensitize tumor cells to drug-induced apoptosis via intracellular hydrogen peroxide production independent of the phosphoinositide 3-kinase-Akt pathway." Cancer Res 65(14): 6264-74.
Prabha, S. and V. Labhasetwar (2004). "Critical determinants in PLGA/PLA nanoparticle-mediated gene expression." Pharm Res 21(2): 354-64.
Presmanes, C., L. de Miguel, et al. (2011). "Effect of PLGA hydrophilia on the drug release and the hypoglucemic activity of different insulin-loaded PLGA microspheres." J Microencapsul 28(8): 791-8.
Qaddoumi, M. G., H. Ueda, et al. (2004). "The characteristics and mechanisms of uptake of PLGA nanoparticles in rabbit conjunctival epithelial cell layers." Pharm Res 21(4): 641-8.
Rajendran, L., H. J. Knolker, et al. (2010). "Subcellular targeting strategies for drug design and delivery." Nat Rev Drug Discov 9(1): 29-42.
Russell, E. V. and N. E. Israeloff (2000). "Direct observation of molecular cooperativity near the glass transition." Nature 408(6813): 695-8.
S.J. Holland, B. J. T. a. P. L. G. (1986). "Polymers for biodegradable medical devices. 1. The potential of polyesters as controlled macromolecular release systems." J. Control. Release 4: 155-180.
Sahoo, S. K., J. Panyam, et al. (2002). "Residual polyvinyl alcohol associated with poly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake." J Control Release 82(1): 105-14.
Sasaki, T., J. Irie-Sasaki, et al. (2000). "Function of PI3Kgamma in thymocyte development, T cell activation, and neutrophil migration." Science 287(5455): 1040-6.
Siegel, H. K. M. a. S. J. (2011). "Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier." Polymers 3: 1377-1397.
Sinha, R., G. J. Kim, et al. (2006). "Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery." Mol Cancer Ther 5(8): 1909-17.
Sinha, V. R. and A. Trehan (2003). "Biodegradable microspheres for protein delivery." J Control Release 90(3): 261-80.
Soppimath, K. S., T. M. Aminabhavi, et al. (2001). "Biodegradable polymeric nanoparticles as drug delivery devices." J Control Release 70(1-2): 1-20.
Srinivasan, S., M. Ohsugi, et al. (2005). "Endoplasmic reticulum stress-induced apoptosis is partly mediated by reduced insulin signaling through phosphatidylinositol 3-kinase/Akt and increased glycogen synthase kinase-3beta in mouse insulinoma cells." Diabetes 54(4): 968-75.
Steelman, L. S., K. M. Stadelman, et al. (2008). "Akt as a therapeutic target in cancer." Expert Opin Ther Targets 12(9): 1139-65.
Stepensky, D. (2010). "Quantitative aspects of intracellularly-targeted drug delivery." Pharm Res 27(12): 2776-80.
Takada, S., Y. Uda, et al. (1995). "Application of a spray drying technique in the production of TRH-containing injectable sustained-release microparticles of biodegradable polymers." PDA J Pharm Sci Technol 49(4): 180-4.
Tice TR, C. D. (1984). "Biodegradable controlled-release parenteral systems." Pharm Technol 11: 26-35.
Torchilin, V. P. (2006). "Recent approaches to intracellular delivery of drugs and DNA and organelle targeting." Annu Rev Biomed Eng 8: 343-75.
Tsujimoto, Y., Y. Tomita, et al. (2004). "Elevated expression of valosin-containing protein (p97) is associated with poor prognosis of prostate cancer." Clin Cancer Res 10(9): 3007-12.
Valle, C. W., T. Min, et al. (2011). "Critical role of VCP/p97 in the pathogenesis and progression of non-small cell lung carcinoma." PLoS One 6(12): e29073.
Vij, N. (2008). "AAA ATPase p97/VCP: cellular functions, disease and therapeutic potential." J Cell Mol Med 12(6A): 2511-8.
Vivanco, I. and C. L. Sawyers (2002). "The phosphatidylinositol 3-Kinase AKT pathway in human cancer." Nat Rev Cancer 2(7): 489-501.
Walker, E. H., M. E. Pacold, et al. (2000). "Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine." Mol Cell 6(4): 909-19.
Wang, G., L. Pan, et al. (2011). "Intranasal delivery of cationic PLGA nano/microparticles-loaded FMDV DNA vaccine encoding IL-6 elicited protective immunity against FMDV challenge." PLoS One 6(11): e27605.
Wang, G., Z. Q. Yang, et al. (2010). "Endoplasmic reticulum stress response in cancer: molecular mechanism and therapeutic potential." Am J Transl Res 2(1): 65-74.
Wang, Q., C. Song, et al. (2004). "Molecular perspectives on p97-VCP: progress in understanding its structure and diverse biological functions." J Struct Biol 146(1-2): 44-57.
West, J. L. and N. J. Halas (2000). "Applications of nanotechnology to biotechnology commentary." Curr Opin Biotechnol 11(2): 215-7.
Whitesides, G. M. (2005). "Nanoscience, nanotechnology, and chemistry." Small 1(2): 172-9.
XS, W. (1995). Preparation, characterization, and drug delivery applications of mucrospheres based on biodegradable lactic/glycolic acid polymers. New York.
Xu, P., E. Gullotti, et al. (2009). "Intracellular drug delivery by poly(lactic-co-glycolic acid) nanoparticles, revisited." Mol Pharm 6(1): 190-201.
Yamaguchi, K., S. H. Lee, et al. (2006). "Activating transcription factor 3 and early growth response 1 are the novel targets of LY294002 in a phosphatidylinositol 3-kinase-independent pathway." Cancer Res 66(4): 2376-84.
Yamamoto, S., Y. Tomita, et al. (2004). "Expression level of valosin-containing protein (p97) is associated with prognosis of esophageal carcinoma." Clin Cancer Res 10(16): 5558-65.
Yamamoto, S., Y. Tomita, et al. (2004). "Increased expression of valosin-containing protein (p97) is associated with lymph node metastasis and prognosis of pancreatic ductal adenocarcinoma." Ann Surg Oncol 11(2): 165-72.
Yamamoto, S., Y. Tomita, et al. (2004). "Expression of valosin-containing protein in colorectal carcinomas as a predictor for disease recurrence and prognosis." Clin Cancer Res 10(2): 651-7.
Yamanaka, K., Y. Sasagawa, et al. (2011). "Recent advances in p97/VCP/Cdc48 cellular functions." Biochim Biophys Acta 1823(1): 130-7.
Yeh, H. H., W. W. Lai, et al. (2006). "Autocrine IL-6-induced Stat3 activation contributes to the pathogenesis of lung adenocarcinoma and malignant pleural effusion." Oncogene 25(31): 4300-9.
Yoo, J. W., N. Doshi, et al. (2010). "Endocytosis and Intracellular Distribution of PLGA Particles in Endothelial Cells: Effect of Particle Geometry." Macromol Rapid Commun 31(2): 142-8.
Yu, B., X. Zhao, et al. (2009). "Targeted delivery systems for oligonucleotide therapeutics." Aaps J 11(1): 195-203.
校內:2018-07-25公開