簡易檢索 / 詳目顯示

研究生: 曾冠傑
Tseng, Kuan-Chieh
論文名稱: 小RNA次世代定序資料分析系統之開發
Development of a system for small RNA next-generation sequencing data analysis
指導教授: 張文綺
Chang, Wen-chi
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 熱帶植物科學研究所
Institute of Tropical Plant Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 56
中文關鍵詞: 小RNA定序微小RNA降解組
外文關鍵詞: mall RNA sequencing, microRNA, degradome
相關次數: 點閱:165下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 小RNA是一種長度小於200個核苷酸的RNA分子,其中微小RNA和小干擾RNA是兩種常見的小RNA。在植物中,這兩種小RNA已知是控制基因表現的重要調控因子,會誘導訊息RNA的降解。近年來,許多植物研究都利用次世代定序發掘小RNA的調控途徑,因此也開發了許多用於分析次世代定序資料的生物資訊工具。然而,大部分的方法都只具有分析小RNA的表現量或是預測新穎的微小RNA等功能,卻幾乎沒有辦法同時分析小RNA對下游調控基因所造成的影響。另一方面,目前還沒有工具能夠分析植物病毒和宿主之間交互作用的機制,也沒辦法分析兩個病毒共同感染所產生的協同機制。為了解決這些問題,本研究開發了一個完整的小RNA次世代定序資料分析系統 (Small RNA Illustration System,簡稱sRIS)。本系統具有兩個主要的分析程式套件,其中一個是用於分析小RNA的概況,不只能夠找出微小RNA,還能夠辨別病毒衍生的小干擾RNA。另一個則是用於預測小RNA的調控標的,此部分不僅透過生物資訊方法進行預測,同時整合降解組的定序資料來提高預測可信度。除此之外,本系統特別以圖表方式呈現分析結果,讓使用者能更輕易判讀分析數據。最後我們也利用一組蝴蝶蘭的小RNA次世代定序資料進行實例分析,透過本系統的分析,能快速找出在特定條件下重要的小RNA,並將之作為後續實驗的候選標的。本系統之開發,相信必能提升小RNA次世代定序資料分析的效率。目前sRIS系統可由以下網址免費取得: http://sris.itps.ncku.edu.tw/

    Small RNA (sRNA) is RNA molecule that is shorter than 200 nt and has many different types. Both microRNA (miRNA) and short interfering RNA (siRNA) are well-known sRNAs to control gene expression based on degradation of target mRNA in plants. Recently, next-generation sequencing (NGS) has been broadly applied to reveal regulatory pathways of plant sRNA in many researches. Consequently, numerous bioinformatics tools have been developed for analyzing sRNA NGS data. However, most methods focus on the study of sRNA expression profiles or novel miRNAs prediction. The analysis of sRNA target genes is usually not integrated into their pipelines. On the other hand, none of them can be applied to identify the interaction mechanisms between host and virus, even though the synergism effects between two viruses. In order to solve the problems mentioned above, a comprehensive system, named as Small RNA Illustration System (sRIS), was developed for small RNA next-generation sequencing data analysis in this study. There are two major packages in this system. One of them is for sRNA overview analysis. It can not only identify miRNA but also investigate virus-derived small interfering RNA (vsiRNA). The other is for sRNA target prediction. Besides bioinformatics calculation, degradome sequencing data is used to enhance the evidence of target prediction. Moreover, the figures and tables of each analysis outputs can be retrieved from this system, and help users to realize the results more easily. Finally, a series of orchid sRNA sequencing data was used to perform the efficiency of the sRIS. Accordingly, several important sRNAs in a specific condition were rapidly identified as good candidates for further experiments validation. We believe this work is helpful to increase the effectiveness of sRNA NGS data analysis. Small RNA illustration system is freely available at: http://sris.itps.ncku.edu.tw/

    中文摘要 I Abstract II 誌謝 III INDEX OF CONTENTS IV LIST OF TABLES VI LIST OF FIGURES VII LIST OF APPENDIX VIII 1. INTRODUCTION 1 1.1. Small RNA is important in the regulation of biological processes 1 1.2. Next-generation sequencing is widely applied to investing sRNA 2 1.3. The bioinformatics tools for small RNA sequencing analysis 3 1.4. The specific aims of this study 4 2. MATERIALS AND METHODS 6 2.1. Construction of system 6 2.2. Work flow of sRNA overview package 6 2.3. Work flow of sRNA target package 7 2.4. z-score transformation of miRNA expression levels 9 2.5. Differently expressed sRNAs analysis 9 2.6. A case study-orchid sRNA NGS data 10 3. RESULTS AND DISCUSSION 11 3.1. Overview of sRNA libraries 11 3.2. miRNA identification 11 3.3. vsiRNA identification 12 3.4. sRNA target prediction 13 3.5. A case study-CymMV and ORSV synergism in mixed infected P. amabilis 14 4. CONCLUSION 17 5. REFERENCE 18

    Adams, M. J., & Antoniw, J. F. (2006). DPVweb: a comprehensive database of plant and fungal virus genes and genomes. Nucleic Acids Res, 34(Database issue), D382-385. doi:10.1093/nar/gkj023
    Afzal, A. J., Wood, A. J., & Lightfoot, D. A. (2008). Plant receptor-like serine threonine kinases: roles in signaling and plant defense. Mol Plant Microbe Interact, 21(5), 507-517. doi:10.1094/MPMI-21-5-0507
    Ahlquist, P. (2002). RNA-dependent RNA polymerases, viruses, and RNA silencing. Science, 296(5571), 1270-1273. doi:10.1126/science.1069132
    Bester, R., Burger, J. T., & Maree, H. J. (2017). Differential expression of miRNAs and associated gene targets in grapevine leafroll-associated virus 3-infected plants. Arch Virol, 162(4), 987-996. doi:10.1007/s00705-016-3197-9
    Beyene, G., Chauhan, R. D., Ilyas, M., Wagaba, H., Fauquet, C. M., Miano, D., . . . Taylor, N. J. (2016). A Virus-Derived Stacked RNAi Construct Confers Robust Resistance to Cassava Brown Streak Disease. Front Plant Sci, 7, 2052. doi:10.3389/fpls.2016.02052
    Brodersen, P., & Voinnet, O. (2006). The diversity of RNA silencing pathways in plants. Trends Genet, 22(5), 268-280. doi:10.1016/j.tig.2006.03.003
    Chiang-Hsieh, Y.-F., Pai, H., Tseng, K.-C., Chow, C.-N., Lee, S.-C., Zheng, H.-Q., . . . Chang, W.-C. (unpublished data). microRPM.
    Donaire, L., & Ayllon, M. A. (2016). Deep sequencing of mycovirus-derived small RNAs from Botrytis species. Mol Plant Pathol. doi:10.1111/mpp.12466
    Donaire, L., Wang, Y., Gonzalez-Ibeas, D., Mayer, K. F., Aranda, M. A., & Llave, C. (2009). Deep-sequencing of plant viral small RNAs reveals effective and widespread targeting of viral genomes. Virology, 392(2), 203-214. doi:10.1016/j.virol.2009.07.005
    Du, P., Wu, J., Zhang, J., Zhao, S., Zheng, H., Gao, G., . . . Li, Y. (2011). Viral infection induces expression of novel phased microRNAs from conserved cellular microRNA precursors. PLoS Pathog, 7(8), e1002176. doi:10.1371/journal.ppat.1002176
    German, M. A., Luo, S., Schroth, G., Meyers, B. C., & Green, P. J. (2009). Construction of Parallel Analysis of RNA Ends (PARE) libraries for the study of cleaved miRNA targets and the RNA degradome. Nat Protoc, 4(3), 356-362. doi:10.1038/nprot.2009.8
    Goodwin, S., McPherson, J. D., & McCombie, W. R. (2016). Coming of age: ten years of next-generation sequencing technologies. Nature Reviews Genetics, 17(6), 333-351. doi:10.1038/nrg.2016.49
    Gordon, A., & Hannon, G. (2010). Fastx-toolkit. FASTQ/A short-reads preprocessing tools (unpublished) http://hannonlab. cshl. edu/fastx_toolkit.
    Hackenberg, M., Sturm, M., Langenberger, D., Falcon-Perez, J. M., & Aransay, A. M. (2009). miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Res, 37(Web Server issue), W68-76. doi:10.1093/nar/gkp347
    Hu, W. W., & Wong, S. M. (1998). The use of DIG-labelled cRNA probes for the detection of cymbidium mosaic potexvirus (CymMV) and odontoglossum ringspot tobamovirus (ORSV) in orchids. Journal of Virological Methods, 70(2), 193-199. doi:Doi 10.1016/S0166-0934(97)00187-0
    Jagtap, U. B., Gurav, R. G., & Bapat, V. A. (2011). Role of RNA interference in plant improvement. Naturwissenschaften, 98(6), 473-492. doi:10.1007/s00114-011-0798-8
    Jung, J. H., & Park, C. M. (2007). MIR166/165 genes exhibit dynamic expression patterns in regulating shoot apical meristem and floral development in Arabidopsis. Planta, 225(6), 1327-1338. doi:10.1007/s00425-006-0439-1
    Kim, J., Jung, J. H., Reyes, J. L., Kim, Y. S., Kim, S. Y., Chung, K. S., . . . Park, C. M. (2005). microRNA-directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant Journal, 42(1), 84-94. doi:10.1111/j.1365-313X.2005.02354.x
    Kim, J. D., Koo, Y. B., & Chang, M. U. (1998). Genome characterization of a Korean isolate of cymbidium mosaic virus. Molecules and Cells, 8(2), 181-188.
    Kozomara, A., & Griffiths-Jones, S. (2014). miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res, 42(Database issue), D68-73. doi:10.1093/nar/gkt1181
    Krishnan, A., Mahadevan, C., Mani, T., & Sakuntala, M. (2015). Virus-induced gene silencing (VIGS) for elucidation of pathogen defense role of serine/threonine protein kinase in the non-model plant Piper colubrinum Link. Plant Cell Tissue and Organ Culture, 122(2), 269-283. doi:10.1007/s11240-015-0764-9
    Kundu, A., Paul, S., Dey, A., & Pal, A. (2017). High throughput sequencing reveals modulation of microRNAs in Vigna mungo upon Mungbean Yellow Mosaic India Virus inoculation highlighting stress regulation. Plant Sci, 257, 96-105. doi:10.1016/j.plantsci.2017.01.016
    Langmead, B., Trapnell, C., Pop, M., & Salzberg, S. L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol, 10(3), R25. doi:10.1186/gb-2009-10-3-r25
    Lee, S. C., & Chang, Y. C. (2006). Multiplex RT-PCR detection of two orchid viruses with an internal control of plant nad5 mRNA. Plant Pathol. Bullet., 15, 187-196.
    Liu, M., Zhu, Z. T., Tao, X. Y., Wang, F. Q., & Wei, D. Z. (2016). RNA-Seq analysis uncovers non-coding small RNA system of Mycobacterium neoaurum in the metabolism of sterols to accumulate steroid intermediates. Microb Cell Fact, 15, 64. doi:10.1186/s12934-016-0462-2
    Liu, S., Li, J. H., Wu, J., Zhou, K. R., Zhou, H., Yang, J. H., & Qu, L. H. (2015). StarScan: a web server for scanning small RNA targets from degradome sequencing data. Nucleic Acids Res, 43(W1), W480-486. doi:10.1093/nar/gkv524
    Mardis, E. R. (2008). Next-generation DNA sequencing methods. Annu Rev Genomics Hum Genet, 9, 387-402. doi:10.1146/annurev.genom.9.081307.164359
    Mi, S. J., Cai, T., Hu, Y. G., Chen, Y., Hodges, E., Ni, F. R., . . . Qi, Y. J. (2008). Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5 ' terminal nucleotide. Cell, 133(1), 116-127. doi:10.1016/j.cell.2008.02.034
    Moxon, S., Schwach, F., Dalmay, T., Maclean, D., Studholme, D. J., & Moulton, V. (2008). A toolkit for analysing large-scale plant small RNA datasets. Bioinformatics, 24(19), 2252-2253. doi:10.1093/bioinformatics/btn428
    Nawrocki, E. P., Burge, S. W., Bateman, A., Daub, J., Eberhardt, R. Y., Eddy, S. R., . . . Finn, R. D. (2015). Rfam 12.0: updates to the RNA families database. Nucleic Acids Res, 43(Database issue), D130-137. doi:10.1093/nar/gku1063
    Palani, P. V., & Lin, N. S. (2007). Northern analysis of viral plus- and minus-strand RNAs. Curr Protoc Microbiol, Chapter 16, Unit 16E 13. doi:10.1002/9780471729259.mc16e03s4
    Pantaleo, V., Saldarelli, P., Miozzi, L., Giampetruzzi, A., Gisel, A., Moxon, S., . . . Burgyan, J. (2010). Deep sequencing analysis of viral short RNAs from an infected Pinot Noir grapevine. Virology, 408(1), 49-56. doi:10.1016/j.virol.2010.09.001
    Rueda, A., Barturen, G., Lebron, R., Gomez-Martin, C., Alganza, A., Oliver, J. L., & Hackenberg, M. (2015). sRNAtoolbox: an integrated collection of small RNA research tools. Nucleic Acids Res, 43(W1), W467-473. doi:10.1093/nar/gkv555
    Ruiz-Ferrer, V., & Voinnet, O. (2009). Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol, 60, 485-510. doi:10.1146/annurev.arplant.043008.092111
    Ryu, K. H., & Park, W. M. (1995). The Complete Nucleotide-Sequence and Genome Organization of Odontoglossum Ringspot Tobamovirus Rna. Archives of Virology, 140(9), 1577-1587. doi:Doi 10.1007/Bf01322531
    Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A, 74(12), 5463-5467.
    Shendure, J., & Ji, H. (2008). Next-generation DNA sequencing. Nat Biotechnol, 26(10), 1135-1145. doi:10.1038/nbt1486
    Shimura, H., Pantaleo, V., Ishihara, T., Myojo, N., Inaba, J., Sueda, K., . . . Masuta, C. (2011). A viral satellite RNA induces yellow symptoms on tobacco by targeting a gene involved in chlorophyll biosynthesis using the RNA silencing machinery. PLoS Pathog, 7(5), e1002021. doi:10.1371/journal.ppat.1002021
    Soto-Suarez, M., Baldrich, P., Weigel, D., Rubio-Somoza, I., & San Segundo, B. (2017). The Arabidopsis miR396 mediates pathogen-associated molecular pattern-triggered immune responses against fungal pathogens. Sci Rep, 7, 44898. doi:10.1038/srep44898
    Szittya, G., Moxon, S., Pantaleo, V., Toth, G., Rusholme Pilcher, R. L., Moulton, V., . . . Dalmay, T. (2010). Structural and functional analysis of viral siRNAs. PLoS Pathog, 6(4), e1000838. doi:10.1371/journal.ppat.1000838
    Takeda, A., Iwasaki, S., Watanabe, T., Utsumi, M., & Watanabe, Y. (2008). The mechanism selecting the guide strand from small RNA duplexes is different among Argonaute proteins. Plant and Cell Physiology, 49(4), 493-500. doi:10.1093/pcp/pcn043
    Varallyay, E., Valoczi, A., Agyi, A., Burgyan, J., & Havelda, Z. (2010). Plant virus-mediated induction of miR168 is associated with repression of ARGONAUTE1 accumulation. Embo Journal, 29(20), 3507-3519. doi:10.1038/emboj.2010.215
    Wang, M., Sun, R., Li, C., Wang, Q., & Zhang, B. (2017). MicroRNA expression profiles during cotton (Gossypium hirsutum L) fiber early development. Sci Rep, 7, 44454. doi:10.1038/srep44454
    Weiberg, A., Wang, M., Lin, F. M., Zhao, H., Zhang, Z., Kaloshian, I., . . . Jin, H. (2013). Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science, 342(6154), 118-123. doi:10.1126/science.1239705
    Wu, J. G., Yang, R. X., Yang, Z. R., Yao, S. Z., Zhao, S. S., Wang, Y., . . . Li, Y. (2017). ROS accumulation and antiviral defence control by microRNA528 in rice. Nature Plants, 3(1). doi:ARTN 16203
    10.1038/nplants.2016.203
    Xie, Z., Johansen, L. K., Gustafson, A. M., Kasschau, K. D., Lellis, A. D., Zilberman, D., . . . Carrington, J. C. (2004). Genetic and functional diversification of small RNA pathways in plants. PLoS Biol, 2(5), E104. doi:10.1371/journal.pbio.0020104
    Xu, Y., Huang, L., Fu, S., Wu, J., & Zhou, X. (2012). Population diversity of rice stripe virus-derived siRNAs in three different hosts and RNAi-based antiviral immunity in Laodelphgax striatellus. PLoS One, 7(9), e46238. doi:10.1371/journal.pone.0046238
    Zhai, J., Arikit, S., Simon, S. A., Kingham, B. F., & Meyers, B. C. (2014). Rapid construction of parallel analysis of RNA end (PARE) libraries for Illumina sequencing. Methods, 67(1), 84-90. doi:10.1016/j.ymeth.2013.06.025
    Zhang, H., Hu, J., Qian, Q., Chen, H., Jin, J., & Ding, Y. (2016). Small RNA Profiles of the Rice PTGMS Line Wuxiang S Reveal miRNAs Involved in Fertility Transition. Front Plant Sci, 7, 514. doi:10.3389/fpls.2016.00514
    Zhang, Z., Jiang, L., Wang, J., Gu, P., & Chen, M. (2015). MTide: an integrated tool for the identification of miRNA-target interaction in plants. Bioinformatics, 31(2), 290-291. doi:10.1093/bioinformatics/btu633
    Zhou, C. J., Zhang, X. Y., Liu, S. Y., Wang, Y., Li, D. W., Yu, J. L., & Han, C. G. (2017). Synergistic infection of BrYV and PEMV 2 increases the accumulations of both BrYV and BrYV-derived siRNAs in Nicotiana benthamiana. Sci Rep, 7, 45132. doi:10.1038/srep45132
    Zhu, J. K. (2008). Reconstituting plant miRNA biogenesis. Proc Natl Acad Sci U S A, 105(29), 9851-9852. doi:10.1073/pnas.0805207105

    下載圖示 校內:2022-08-10公開
    校外:2022-08-10公開
    QR CODE