簡易檢索 / 詳目顯示

研究生: 林志鴻
Lin, Chih-Hong
論文名稱: 鋅-鑭系金屬簇之合成、結構及磁性研究
Syntheses, structures, and magnetic properties of heterometallic zinc-lanthanide complexes
指導教授: 蔡惠蓮
Tsai, Hui-Lien
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 188
中文關鍵詞: 鋅–鑭系混金屬團簇單分子磁鐵β-雙酮配位基
外文關鍵詞: lanthanide, anisotropy, single molecular magnets
相關次數: 點閱:66下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文分成兩部分,第一部分利用1-(2-methoxyphenyl)-3-(pyridin-2-yl)propane-1,3-dione (Hmppd)分別與鋅(II)及鑭系(III)金屬離子合成出一系列3d-4f三核直線型鏈狀混金屬錯合物[ZnII2LnIII(Hmppd)2(μ2-OAc)4(μ2-η1:η2-OAc)]n (Ln = (1)Gd, (2)Tb, (3)Dy, (4)Ho),並藉由單晶X光繞射儀鑑定其結構。其錯合物金屬中心透過兩個配位基mppd-和四個醋酸根形成三核的結構,兩個三核團簇在藉由醋酸橋接形成鏈狀聚合物。交流磁化率(alternative current susceptibility, ac)來發現,1∙Gd和3∙Dy在外加磁場的情況下有磁緩現象的發生,其磁異向能(Ueff)分別為31.62 K和105.56 K。此外,1∙Gd在溫度2 K並外加7 Tesla的磁場時,擁有13.66 J mol-1K-1的磁熵變化量。
    第二部分利用1-(1-ethyl-1H-pyrrol-2-yl)-3-(pyridin-2-yl)propane-1,3-dione (Heppd)分別與鋅(II)及鑭系(III)金屬離子反應合成出一系列3d-4f雙核混金屬錯合物[ZnIILnIII(L)2Cl(H2O)4][ZnCl4]∙MeCN∙xH2O (Ln = (5)Gd, (6)Tb, (7)Dy, (8)Ho, (9)Er),並藉由單晶X光繞射儀靜定其結構。其金屬中心透過兩個配位基eppd-橋接形成雙核金屬錯合物。交流磁化率(alternative current susceptibility, ac)測量發現7∙Dy在零外加磁場的情況下,有磁緩現象的發生,其磁異向能(Ueff)為241.39 K。而9∙Er在外加800 Oe的磁場的情況下測得其磁異向能(Ueff)為12.21 K。對比相似結構的銅鑭系雙核金屬團簇的磁性表現,發現微弱的交換交互作用力(exchange coupling)會使量子穿隧效應(Quantum Tunneling Magnetization, QTM)增強,進而降低磁異向能的表現。 

    There are two parts in this work. For the first part, a family of isostructural Zn-Ln-Zn chains (Ln = Gd, Tb, Dy, Ho) using a β-diketone ligand (Hmppd = 1-(2-methoxyphenyl)-3-(pyridin-2-yl)propane-1,3-dione), zinc(II) acetate, and lanthanide(III) acetate is reported. Single-crystal X-ray diffraction studies show that the chain-complexes crystallized in triclinic P 1 ̅. The Zn-Ln-Zn cores that are bridged by two mppd- ligands, three μ2-acetates, and one μ2-η 1: η 2-acetate. The trimers are connected by a μ2-acetate on the terminal Zn ions to form a 1D chain. In zero field ac susceptibility measurement, no maximum signal for complex 3∙Dy was found below 15 K, but for complexes 1∙Gd, 2∙Tb and 4∙Ho negligible χ" signal were observed. Only complexes 1∙Gd and 3∙Dy showed a slow magnetic relaxation in an applied field based on ac data. The energy barrier for complexes 1∙Gd (under 2500 Oe) and 3∙Dy (under 3000 Oe), as estimated from Arrhenius plots, were determined to be 31.62 and 105.56 K, respectively. The relatively large quantum tunneling magnetization (QTM) process of complex 3∙Dy in a zero field may due to the weak axial crystal field provided by the Hmppd ligand. In addition, the magnetic entropy change (-∆S_m) of 1∙Gd was estimated to be 13.66 J mol-1K-1 at 2 K for ∆H = 7 T.
    For the second prat, the syntheses, structures and magnetic properties of a series isostructural Zn-Ln complexes [ZnIILnIII(eppd)2Cl(H2O)4][ZnCl4]∙MeCN∙xH2O (Ln = (5)Gd, (6)Tb, (7)Dy, (8)Ho, (9)Er) (Heppd = 1-(1-ethyl-1H-pyrrol-2-yl)-3-(pyridin-2-yl)propane-1,3-dione)were reported. The N2O4 pocket created by two eppd- ligands chelating the ZnII and DyIII ions and provide a better axiality for DyIII ion. In zero field ac susceptibility measurement, 7∙Dy exhibit strong magnetic relaxation up to 40 K and the energy barrier (Ueff) was estimated to be 241.39 K. Upon 1000 Oe dc field was applied, the QTM process were suppressed entirely, resulting in a thermal barrier (Ueff) of 334.26 K. Also, the 9∙Er shows a field induced magnetic relaxation under 800 Oe applied dc field. The energy barrier was estimated to be 12.21 K.

    中文摘要 I Abstract II 誌謝 IV Lists of Table VII Lists of Figures IX Literature Review 1 Chapter 1 Syntheses, Structures and Magnetic Properties of Zn-Ln-Zn Chains [ZnII2LnIII(L)2Cl(μ2-OAc)4(μ2-η1:η2-OAc)] 5 I. Introduction 6 II. Experimental section 9 II.1. Synthesis 9 II.2. X-ray crystallography 14 II.3. Physical measurements 17 III. Results and discussion 18 III.1. Synthesis 18 III.2. Crystals Structures 20 III.3. Magnetic properties 33 VI. Conclusion 70 Chapter 2 Syntheses, Structures and Magnetic Properties of Zn-Ln dinuclear [ZnIILnIII(L)2Cl(H2O)4][ZnCl4]∙MeCN∙xH2O 71 I. Introduction 72 II. Experimental section 75 II.1. Synthesis 75 II.2. X-ray crystallography 81 II.3. Physical measurements 84 III. Results and discussion 85 III.1. Synthesis 85 III.2. Crystals Structures 88 III.3. Magnetic properties 104 VI. Conclusion 143 Reference 144 Appendix 153

    1. Leuenberger, M. N.; Loss, D., Quantum computing in molecular magnets. Nature 2001, 410, 789.
    2. Rocha, A. R.; García-suárez, V. M.; Bailey, S. W.; Lambert, C. J.; Ferrer, J.; Sanvito, S., Towards molecular spintronics. Nature Materials 2005, 4, 335.
    3. Affronte, M., Molecular nanomagnets for information technologies. Journal of Materials Chemistry 2009, 19 (12), 1731-1737.
    4. Sessoli, R.; Tsai, H. L.; Schake, A. R.; Wang, S.; Vincent, J. B.; Folting, K.; Gatteschi, D.; Christou, G.; Hendrickson, D. N., High-Spin Molecules - [Mn12O12(O2CR)16(H2O)4]. Journal of the American Chemical Society 1993, 115 (5), 1804-1816.
    5. Ako, A. M.; Hewitt, I. J.; Mereacre, V.; Clérac, R.; Wernsdorfer, W.; Anson, C. E.; Powell, A. K., A Ferromagnetically Coupled Mn19 Aggregate with a Record S=83/2 Ground Spin State. Angewandte Chemie International Edition 2006, 45 (30), 4926-4929.
    6. Lecren, L.; Roubeau, O.; Coulon, C.; Li, Y.-G.; Le Goff, X. F.; Wernsdorfer, W.; Miyasaka, H.; Clérac, R., Slow Relaxation in a One-Dimensional Rational Assembly of Antiferromagnetically Coupled [Mn4] Single-Molecule Magnets. Journal of the American Chemical Society 2005, 127 (49), 17353-17363.
    7. Milios, C. J.; Raptopoulou, C. P.; Terzis, A.; Lloret, F.; Vicente, R.; Perlepes, S. P.; Escuer, A., Hexanuclear Manganese(III) Single-Molecule Magnets. Angewandte Chemie International Edition 2004, 43 (2), 210-212.
    8. Tasiopoulos, A. J.; Vinslava, A.; Wernsdorfer, W.; Abboud, K. A.; Christou, G., Giant Single-Molecule Magnets: A {Mn84} Torus and Its Supramolecular Nanotubes. Angewandte Chemie International Edition 2004, 43 (16), 2117-2121.
    9. Maheswaran, S.; Chastanet, G.; Teat, S. J.; Mallah, T.; Sessoli, R.; Wernsdorfer, W.; Winpenny, R. E. P., Phosphonate Ligands Stabilize Mixed-Valent {MnIII20−xMnIIx} Clusters with Large Spin and Coercivity. Angewandte Chemie International Edition 2005, 44 (32), 5044-5048.
    10. Price, D. J.; Batten, S. R.; Moubaraki, B.; Murray, K. S., Synthesis, crystal structure and magnetism of a single-molecule magnet, [Mn16O16(OMe)6(OAc)16(MeOH)3(H2O)3]·6H2O, and of a mixed bridge 1D chain, [Mn(μ-OMe)(μ-OAc)2]n. Polyhedron 2007, 26 (2), 305-317.
    11. Barra, A.-L.; Debrunner, P.; Gatteschi, D.; Schulz, C. E.; Sessoli, R. J. E. L., Superparamagnetic-like behavior in an octanuclear iron cluster. Europhysics Letters 1996, 35 (2), 133-138.
    12. Barra, A. L.; Caneschi, A.; Cornia, A.; Fabrizi de Biani, F.; Gatteschi, D.; Sangregorio, C.; Sessoli, R.; Sorace, L., Single-Molecule Magnet Behavior of a Tetranuclear Iron(III) Complex. The Origin of Slow Magnetic Relaxation in Iron(III) Clusters. Journal of the American Chemical Society 1999, 121 (22), 5302-5310.
    13. Boudalis, A. K.; Sanakis, Y.; Clemente-Juan, J. M.; Donnadieu, B.; Nastopoulos, V.; Mari, A.; Coppel, Y.; Tuchagues, J.-P.; Perlepes, S. P., A Family of Enneanuclear Iron(II) Single-Molecule Magnets. Chemistry—A European Journal 2008, 14 (8), 2514-2526.
    14. Langley, S. J.; Helliwell, M.; Sessoli, R.; Rosa, P.; Wernsdorfer, W.; Winpenny, R. E. P., Slow relaxation of magnetisation in an octanuclear cobalt(II) phosphonate cage complex. Chemical Communications 2005, (40), 5029-5031.
    15. Murrie, M.; Teat, S. J.; Stœckli-Evans, H.; Güdel, H. U., Synthesis and Characterization of a Cobalt(II) Single-Molecule Magnet. Angewandte Chemie International Edition 2003, 42 (38), 4653-4656.
    16. Wu, D.; Guo, D.; Song, Y.; Huang, W.; Duan, C.; Meng, Q.; Sato, O., CoII Molecular Square with Single-Molecule Magnet Properties. Inorganic Chemistry 2009, 48 (3), 854-860.
    17. Blake, A. J.; Grant, C. M.; Parsons, S.; Rawson, J. M.; Winpenny, R. E. P., The synthesis, structure and magnetic properties of a cyclic dodecanuclear nickel complex. Journal of the American Chemical Society, Chemical Communications 1994, (20), 2363-2364.
    18. Biswas, R.; Ida, Y.; Baker, M. L.; Biswas, S.; Kar, P.; Nojiri, H.; Ishida, T.; Ghosh, A., A New Family of Trinuclear Nickel(II) Complexes as Single-Molecule Magnets. Chemistry – A European Journal 2013, 19 (12), 3943-3953.
    19. Ishikawa, N.; Sugita, M.; Ishikawa, T.; Koshihara, S.-y.; Kaizu, Y., Lanthanide Double-Decker Complexes Functioning as Magnets at the Single-Molecular Level. Journal of the American Chemical Society 2003, 125 (29), 8694-8695.
    20. Rinehart, J. D.; Long, J. R., Exploiting single-ion anisotropy in the design of f-element single-molecule magnets. Chemical Science 2011, 2 (11), 2078-2085.
    21. Ganivet, C. R.; Ballesteros, B.; de la Torre, G.; Clemente-Juan, J. M.; Coronado, E.; Torres, T., Influence of Peripheral Substitution on the Magnetic Behavior of Single-Ion Magnets Based on Homo- and Heteroleptic Tb(III) Bis(phthalocyaninate). Chemistry – A European Journal 2013, 19 (4), 1457-1465.
    22. Blagg, R. J.; Muryn, C. A.; McInnes, E. J. L.; Tuna, F.; Winpenny, R. E. P., Single Pyramid Magnets: Dy5 Pyramids with Slow Magnetic Relaxation to 40 K. Angewandte Chemie International Edition 2011, 50 (29), 6530-6533.
    23. Blagg, R. J.; Ungur, L.; Tuna, F.; Speak, J.; Comar, P.; Collison, D.; Wernsdorfer, W.; McInnes, E. J. L.; Chibotaru, L. F.; Winpenny, R. E. P., Magnetic relaxation pathways in lanthanide single-molecule magnets. Nature Chemistry 2013, 5, 673.
    24. Gregson, M.; Chilton, N. F.; Ariciu, A.-M.; Tuna, F.; Crowe, I. F.; Lewis, W.; Blake, A. J.; Collison, D.; McInnes, E. J. L.; Winpenny, R. E. P.; Liddle, S. T., A monometallic lanthanide bis(methanediide) single molecule magnet with a large energy barrier and complex spin relaxation behaviour. Chemical Science 2016, 7 (1), 155-165.
    25. Chen, Y.-C.; Liu, J.-L.; Ungur, L.; Liu, J.; Li, Q.-W.; Wang, L.-F.; Ni, Z.-P.; Chibotaru, L. F.; Chen, X.-M.; Tong, M.-L., Symmetry-Supported Magnetic Blocking at 20 K in Pentagonal Bipyramidal Dy(III) Single-Ion Magnets. Journal of the American Chemical Society 2016, 138 (8), 2829-2837.
    26. Liu, J.; Chen, Y.-C.; Liu, J.-L.; Vieru, V.; Ungur, L.; Jia, J.-H.; Chibotaru, L. F.; Lan, Y.; Wernsdorfer, W.; Gao, S.; Chen, X.-M.; Tong, M.-L., A Stable Pentagonal Bipyramidal Dy(III) Single-Ion Magnet with a Record Magnetization Reversal Barrier over 1000 K. Journal of the American Chemical Society 2016, 138 (16), 5441-5450.
    27. Gupta, S. K.; Rajeshkumar, T.; Rajaraman, G.; Murugavel, R., An air-stable Dy(III) single-ion magnet with high anisotropy barrier and blocking temperature. Chemical Science 2016, 7 (8), 5181-5191.
    28. Ding, Y. S.; Chilton, N. F.; Winpenny, R. E.; Zheng, Y. Z., On Approaching the Limit of Molecular Magnetic Anisotropy: A Near-Perfect Pentagonal Bipyramidal Dysprosium(III) Single-Molecule Magnet. Angewandte Chemie International Edition 2016, 55 (52), 16071-16074.
    29. Jiang, S.-D.; Wang, B.-W.; Sun, H.-L.; Wang, Z.-M.; Gao, S., An Organometallic Single-Ion Magnet. Journal of the American Chemical Society 2011, 133 (13), 4730-4733.
    30. Le Roy, J. J.; Ungur, L.; Korobkov, I.; Chibotaru, L. F.; Murugesu, M., Coupling Strategies to Enhance Single-Molecule Magnet Properties of Erbium–Cyclooctatetraenyl Complexes. Journal of the American Chemical Society 2014, 136 (22), 8003-8010.
    31. Liu, J.-L.; Chen, Y.-C.; Tong, M.-L., Symmetry strategies for high performance lanthanide-based single-molecule magnets. Chemical Society Reviews 2018, 47 (7), 2431-2453.
    32. Guo, F. S.; Day, B. M.; Chen, Y. C.; Tong, M. L.; Mansikkamäki, A.; Layfield, R. A., A Dysprosium Metallocene Single‐Molecule Magnet Functioning at the Axial Limit. Angewandte Chemie International Edition 2017, 56 (38), 11445-11449.
    33. Guo, F. S.; Day, B. M.; Chen, Y. C.; Tong, M. L.; Mansikkamaki, A.; Layfield, R. A., Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet. Science 2018, 362 (6421), 1400-1403.
    34. Liu, K.; Shi, W.; Cheng, P., Toward heterometallic single-molecule magnets: Synthetic strategy, structures and properties of 3d–4f discrete complexes. Coordination Chemistry Reviews 2015, 289-290, 74-122.
    35. Oyarzabal, I.; Artetxe, B.; Rodríguez-Diéguez, A.; García, J. Á.; Seco, J. M.; Colacio, E., A family of acetato-diphenoxo triply bridged dimetallic Zn(II)Ln(III) complexes: SMM behavior and luminescent properties. Dalton Transactions 2016, 45 (23), 9712-9726.
    36. Long, J.; Mamontova, E.; Freitas, V.; Luneau, D.; Vieru, V.; Chibotaru, L. F.; Ferreira, R. A. S.; Félix, G.; Guari, Y.; Carlos, L. D.; Larionova, J., Study of the influence of magnetic dilution over relaxation processes in a Zn/Dy single-ion magnet by correlation between luminescence and magnetism. RSC Advances 2016, 6 (110), 108810-108818.
    37. Vignesh, K. R.; Langley, S. K.; Murray, K. S.; Rajaraman, G., Exploring the Influence of Diamagnetic Ions on the Mechanism of Magnetization Relaxation in {CoIII2LnIII2} (Ln = Dy, Tb, Ho) “Butterfly” Complexes. Inorganic Chemistry 2017, 56 (5), 2518-2532.
    38. Yang, J.-W.; Tian, Y.-M.; Tao, J.; Chen, P.; Li, H.-F.; Zhang, Y.-Q.; Yan, P.-F.; Sun, W.-B., Modulation of the Coordination Environment around the Magnetic Easy Axis Leads to Significant Magnetic Relaxations in a Series of 3d-4f Schiff Complexes. Inorganic Chemistry 2018, 57 (14), 8065-8077.
    39. Das, S.; Bejoymohandas, K. S.; Dey, A.; Biswas, S.; Reddy, M. L.; Morales, R.; Ruiz, E.; Titos-Padilla, S.; Colacio, E.; Chandrasekhar, V., Amending the anisotropy barrier and luminescence behavior of heterometallic trinuclear linear [M(II) -Ln(III) -M(II) ] (Ln(III) =Gd, Tb, Dy; M(II) =Mg/Zn) complexes by change from divalent paramagnetic to diamagnetic metal ions. Chemistry – A European Journal 2015, 21 (17), 6449-64.
    40. Oyarzabal, I.; Ruiz, J.; Ruiz, E.; Aravena, D.; Seco, J. M.; Colacio, E., Increasing the effective energy barrier promoted by the change of a counteranion in a Zn–Dy–Zn SMM: slow relaxation via the second excited state. Chemical Communications 2015, 51 (62), 12353-12356.
    41. Liu, J.-L.; Chen, Y.-C.; Zheng, Y.-Z.; Lin, W.-Q.; Ungur, L.; Wernsdorfer, W.; Chibotaru, L. F.; Tong, M.-L., Switching the anisotropy barrier of a single-ion magnet by symmetry change from quasi-D5h to quasi-Oh. Chemical Science 2013, 4 (8), 3310-3316.
    42. Liu, C.-M.; Zhang, D.-Q.; Su, J.-B.; Zhang, Y.-Q.; Zhu, D.-B., Single-Molecule Magnet Behavior of 1D Coordination Polymers Based on DyZn2(salen)2 Units and Pyridin-N-Oxide-4-Carboxylate: Structural Divergence and Magnetic Regulation. Inorganic Chemistry 2018, 57 (17), 11077-11086.
    43. Wen, H.-R.; Dong, P.-P.; Liu, S.-J.; Liao, J.-S.; Liang, F.-Y.; Liu, C.-M., 3d–4f heterometallic trinuclear complexes derived from amine-phenol tripodal ligands exhibiting magnetic and luminescent properties. Dalton Transactions 2017, 46 (4), 1153-1162.
    44. Oyarzabal, I.; Rodríguez-Diéguez, A.; Barquín, M.; Seco, J. M.; Colacio, E., The effect of the disposition of coordinated oxygen atoms on the magnitude of the energy barrier for magnetization reversal in a family of linear trinuclear Zn–Dy–Zn complexes with a square-antiprism DyO8 coordination sphere. Dalton Transactions 2017, 46 (13), 4278-4286.
    45. Maeda, M.; Hino, S.; Yamashita, K.; Kataoka, Y.; Nakano, M.; Yamamura, T.; Kajiwara, T., Correlation between slow magnetic relaxation and the coordination structures of a family of linear trinuclear Zn(II)–Ln(III)–Zn(II) complexes (Ln = Tb, Dy, Ho, Er, Tm and Yb). Dalton Transactions 2012, 41 (44), 13640-13648.
    46. Watanabe, A.; Yamashita, A.; Nakano, M.; Yamamura, T.; Kajiwara, T., Multi-path magnetic relaxation of mono-dysprosium(III) single-molecule magnet with extremely high barrier. Chemistry – A European Journal 2011, 17 (27), 7428-32.
    47. Upadhyay, A.; Singh, S. K.; Das, C.; Mondol, R.; Langley, S. K.; Murray, K. S.; Rajaraman, G.; Shanmugam, M., Enhancing the effective energy barrier of a Dy(III) SMM using a bridged diamagnetic Zn(II) ion. Chemical Communications 2014, 50 (64), 8838-8841.
    48. Song, X.-Q.; Liu, P.-P.; Wang, C.-y.; Liu, Y.-A.; Liu, W.-S.; Zhang, M., Three sandwich-type zinc(II)–lanthanide(III) clusters: structures, luminescence and magnetic properties. RSC Advances 2017, 7 (37), 22692-22698.
    49. Sun, W.-B.; Yan, P.-F.; Jiang, S.-D.; Wang, B.-W.; Zhang, Y.-Q.; Li, H.-F.; Chen, P.; Wang, Z.-M.; Gao, S., High symmetry or low symmetry, that is the question – high performance Dy(iii) single-ion magnets by electrostatic potential design. Chemical Science 2016, 7 (1), 684-691.
    50. Stamp, P. C. E.; Gaita-Ariño, A., Spin-based quantum computers made by chemistry: hows and whys. Journal of Materials Chemistry 2009, 19 (12), 1718-1730.
    51. Troiani, F.; Affronte, M., Molecular spins for quantum information technologies. Chem. Soc. Rev. 2011, 40 (6), 3119-3129.
    52. Ardavan, A.; Rival, O.; Morton, J. J. L.; Blundell, S. J.; Tyryshkin, A. M.; Timco, G. A.; Winpenny, R. E. P., Will Spin-Relaxation Times in Molecular Magnets Permit Quantum Information Processing? Physical Review Letters 2007, 98 (5), 057201.
    53. Martínez-Pérez, M. J.; Cardona-Serra, S.; Schlegel, C.; Moro, F.; Alonso, P. J.; Prima-García, H.; Clemente-Juan, J. M.; Evangelisti, M.; Gaita-Ariño, A.; Sesé, J.; van Slageren, J.; Coronado, E.; Luis, F., Gd-Based Single-Ion Magnets with Tunable Magnetic Anisotropy: Molecular Design of Spin Qubits. Physical Review Letters 2012, 108 (24), 247213.
    54. Winpenny, R. E., Quantum information processing using molecular nanomagnets as qubits. Angewandte Chemie International Edition 2008, 47 (42), 7992-4.
    55. Kazin, P. E.; Zykin, M. A.; Utochnikova, V. V.; Magdysyuk, O. V.; Vasiliev, A. V.; Zubavichus, Y. V.; Schnelle, W.; Felser, C.; Jansen, M., “Isolated” DyO+ Embedded in a Ceramic Apatite Matrix Featuring Single‐Molecule Magnet Behavior with a High Energy Barrier for Magnetization Relaxation. Angewandte Chemie International Edition 2017, 56 (43), 13416-13420.
    56. Norel, L.; Darago, L. E.; Le Guennic, B.; Chakarawet, K.; Gonzalez, M. I.; Olshansky, J. H.; Rigaut, S.; Long, J. R., A Terminal Fluoride Ligand Generates Axial Magnetic Anisotropy in Dysprosium Complexes. Angewandte Chemie International Edition 2018, 57 (7), 1933-1938.
    57. Xiong, J.; Ding, H.-Y.; Meng, Y.-S.; Gao, C.; Zhang, X.-J.; Meng, Z.-S.; Zhang, Y.-Q.; Shi, W.; Wang, B.-W.; Gao, S., Hydroxide-bridged five-coordinate DyIII single-molecule magnet exhibiting the record thermal relaxation barrier of magnetization among lanthanide-only dimers. Chemical Science 2017, 8 (2), 1288-1294.
    58. Chilton, N. F., Design Criteria for High-Temperature Single-Molecule Magnets. Inorganic Chemistry 2015, 54 (5), 2097-2099.
    59. Ungur, L.; Chibotaru, L. F., Strategies toward High-Temperature Lanthanide-Based Single-Molecule Magnets. Inorganic Chemistry 2016, 55 (20), 10043-10056.
    60. Langley, S. K.; Wielechowski, D. P.; Vieru, V.; Chilton, N. F.; Moubaraki, B.; Abrahams, B. F.; Chibotaru, L. F.; Murray, K. S., A {CrIII2DyIII2} Single‐Molecule Magnet: Enhancing the Blocking Temperature through 3d Magnetic Exchange. Angewandte Chemie International Edition 2013, 52 (46), 12014-12019.
    61. Yamaguchi, T.; Costes, J.-P.; Kishima, Y.; Kojima, M.; Sunatsuki, Y.; Bréfuel, N.; Tuchagues, J.-P.; Vendier, L.; Wernsdorfer, W., Face-Sharing Heterotrinuclear MII−LnIII−MII (M = Mn, Fe, Co, Zn; Ln = La, Gd, Tb, Dy) Complexes: Synthesis, Structures, and Magnetic Properties. Inorganic Chemistry 2010, 49 (20), 9125-9135.
    62. Liu, J. L.; Wu, J. Y.; Chen, Y. C.; Mereacre, V.; Powell, A. K.; Ungur, L.; Chibotaru, L. F.; Chen, X. M.; Tong, M. L., A heterometallic Fe(II)-Dy(III) single-molecule magnet with a record anisotropy barrier. Angewandte Chemie International Edition 2014, 53 (47), 12966-70.
    63. Liu, J.-L.; Wu, J.-Y.; Huang, G.-Z.; Chen, Y.-C.; Jia, J.-H.; Ungur, L.; Chibotaru, L. F.; Chen, X.-M.; Tong, M.-L., Desolvation-Driven 100-Fold Slow-down of Tunneling Relaxation Rate in Co(II)-Dy(III) Single-Molecule Magnets through a Single-Crystal-to-Single-Crystal Process. Scientific Reports 2015, 5, 16621.
    64. Towatari, M.; Nishi, K.; Fujinami, T.; Matsumoto, N.; Sunatsuki, Y.; Kojima, M.; Mochida, N.; Ishida, T.; Re, N.; Mrozinski, J., Syntheses, Structures, and Magnetic Properties of Acetato- and Diphenolato-Bridged 3d–4f Binuclear Complexes [M(3-MeOsaltn)(MeOH)x(ac)Ln(hfac)2] (M = ZnII, CuII, NiII, CoII; Ln = LaIII, GdIII, TbIII, DyIII; 3-MeOsaltn = N,N′-Bis(3-methoxy-2-oxybenzylidene)-1,3-propanediaminato; ac = Acetato; hfac = Hexafluoroacetylacetonato; x = 0 or 1). Inorganic Chemistry 2013, 52 (10), 6160-6178.
    65. Kajiwara, T.; Nakano, M.; Takahashi, K.; Takaishi, S.; Yamashita, M., Structural Design of Easy‐Axis Magnetic Anisotropy and Determination of Anisotropic Parameters of LnIII‒CuII Single‐Molecule Magnets. Chemistry - A European Journal 2011, 17 (1), 196-205.
    66. Liu, J. L.; Lin, W. Q.; Chen, Y. C.; Gomez-Coca, S.; Aravena, D.; Ruiz, E.; Leng, J. D.; Tong, M. L., Cu(II)-Gd(III) cryogenic magnetic refrigerants and Cu8Dy9 single-molecule magnet generated by in situ reactions of picolinaldehyde and acetylpyridine: experimental and theoretical study. Chemistry - A European Journal 2013, 19 (51), 17567-77.
    67. Xiong, G.; Qin, X.-Y.; Shi, P.-F.; Hou, Y.-L.; Cui, J.-Z.; Zhao, B., New strategy to construct single-ion magnets: a unique Dy@Zn6 cluster exhibiting slow magnetic relaxation. Chemical Communications 2014, 50 (32), 4255-4257.
    68. Oyarzabal, I.; Ruiz, J.; Seco, J. M.; Evangelisti, M.; Camon, A.; Ruiz, E.; Aravena, D.; Colacio, E., Rational electrostatic design of easy-axis magnetic anisotropy in a Zn(II) -Dy(III) -Zn(II) single-molecule magnet with a high energy barrier. Chemistry - A European Journal 2014, 20 (44), 14262-9.
    69. Then, P. L.; Takehara, C.; Kataoka, Y.; Nakano, M.; Yamamura, T.; Kajiwara, T., Structural switching from paramagnetic to single-molecule magnet behaviour of LnZn2 trinuclear complexes. Dalton Transactions 2015, 44 (41), 18038-18048.
    70. Fondo, M.; Corredoira-Vázquez, J.; Herrera-Lanzós, A.; García-Deibe, A. M.; Sanmartín-Matalobos, J.; Herrera, J. M.; Colacio, E.; Nuñez, C., Improving the SMM and luminescence properties of lanthanide complexes with LnO9 cores in the presence of ZnII: an emissive Zn2Dy single ion magnet. Dalton Transactions 2017, 46 (48), 17000-17009.
    71. Liu, J.-L.; Chen, Y.-C.; Guo, F.-S.; Tong, M.-L., Recent advances in the design of magnetic molecules for use as cryogenic magnetic coolants. Coordination Chemistry Reviews 2014, 281, 26-49.
    72. Zhang, S.; Cheng, P., Coordination-Cluster-Based Molecular Magnetic Refrigerants. The Chemical Record 2016, 16 (4), 2077-2126.
    73. Levine, R.; Sneed, J. K., The Synthesis of New β-Diketones. Journal of the American Chemical Society 1951, 73 (9), 4478-4478.
    74. Sheldrick, G., Crystal structure refinement with SHELXL. Acta Crystallographica Section C 2015, 71 (1), 3-8.
    75. Mulay, L. N.; Boudreaux, E. A., Theory and applications of molecular paramagnetism. Wiley: New York, 1976; p x, 510 p.
    76. Casanova, D.; Llunell, M.; Alemany, P.; Alvarez, S., The Rich Stereochemistry of Eight-Vertex Polyhedra: A Continuous Shape Measures Study. Chemistry - A European Journal 2005, 11 (5), 1479-1494.
    77. Gou, J.; Liu, S.; Wang, Y.-J.; Li, L.; Ren, P.; Gao, H.-L.; Cui, J.-Z., Tetranuclear rare-earth complexes: energy barrier enhancement and two-step slow magnetic relaxation activated by ligand substitution. Inorganic Chemistry Frontiers 2019, 6 (3), 756-764.
    78. Holmberg, R. J.; Ho, L. T. A.; Ungur, L.; Korobkov, I.; Chibotaru, L. F.; Murugesu, M., Observation of unusual slow-relaxation of the magnetisation in a Gd-EDTA chelate. Dalton Transactions 2015, 44 (47), 20321-20325.
    79. Evangelisti, M.; Brechin, E. K., Recipes for enhanced molecular cooling. Dalton Transactions 2010, 39 (20), 4672-4676.
    80. Arauzo, A.; Lazarescu, A.; Shova, S.; Bartolomé, E.; Cases, R.; Luzón, J.; Bartolomé, J.; Turta, C., Structural and magnetic properties of some lanthanide (Ln = Eu(iii), Gd(iii) and Nd(iii)) cyanoacetate polymers: field-induced slow magnetic relaxation in the Gd and Nd substitutions. Dalton Transactions 2014, 43 (32), 12342-12356.
    81. da Cunha, T. T.; Barbosa, V. M. M.; Oliveira, W. X. C.; Pinheiro, C. B.; Pedroso, E. F.; Nunes, W. C.; Pereira, C. L. M., Slow magnetic relaxation in mononuclear gadolinium(III) and dysprosium(III) oxamato complexes. Polyhedron 2019, 169, 102-113.
    82. Calahorro, A. J.; Oyarzabal, I.; Fernández, B.; Seco, J. M.; Tian, T.; Fairen-Jimenez, D.; Colacio, E.; Rodríguez-Diéguez, A., Rare earth anthracenedicarboxylate metal–organic frameworks: slow relaxation of magnetization of Nd3+, Gd3+, Dy3+, Er3+ and Yb3+ based materials. Dalton Transactions 2016, 45 (2), 591-598.
    83. Khalfaoui, O.; Beghidja, A.; Long, J.; Boussadia, A.; Beghidja, C.; Guari, Y.; Larionova, J., Cinnamic acid derivative rare-earth dinuclear complexes and one-dimensional architectures: synthesis, characterization and magnetic properties. Dalton Transactions 2017, 46 (12), 3943-3952.
    84. Izuogu, D. C.; Yoshida, T.; Zhang, H.; Cosquer, G.; Katoh, K.; Ogata, S.; Hasegawa, M.; Nojiri, H.; Damjanović, M.; Wernsdorfer, W.; Uruga, T.; Ina, T.; Breedlove, B. K.; Yamashita, M., Slow Magnetic Relaxation in a Palladium–Gadolinium Complex Induced by Electron Density Donation from the Palladium Ion. Chemistry - A European Journal 2018, 24 (37), 9285-9294.
    85. Gatteschi, D.; Sessoli, R., Quantum Tunneling of Magnetization and Related Phenomena in Molecular Materials. 2003, 42 (3), 268-297.
    86. Bogani, L.; Wernsdorfer, W., Molecular spintronics using single-molecule magnets. Nature Materials 2008, 7, 179.
    87. Bagai, R.; Christou, G., The Drosophila of single-molecule magnetism: [Mn12O12(O2CR)16(H2O)4]. Chemical Society Reviews 2009, 38 (4), 1011-1026.
    88. Mannini, M.; Pineider, F.; Sainctavit, P.; Danieli, C.; Otero, E.; Sciancalepore, C.; Talarico, A. M.; Arrio, M.-A.; Cornia, A.; Gatteschi, D.; Sessoli, R., Magnetic memory of a single-molecule quantum magnet wired to a gold surface. Nature Materials 2009, 8, 194.
    89. Vincent, R.; Klyatskaya, S.; Ruben, M.; Wernsdorfer, W.; Balestro, F., Electronic read-out of a single nuclear spin using a molecular spin transistor. Nature 2012, 488, 357.
    90. Ganzhorn, M.; Klyatskaya, S.; Ruben, M.; Wernsdorfer, W., Strong spin–phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system. Nature Nanotechnology 2013, 8, 165.
    91. Norel, L.; Darago, L. E.; Le Guennic, B.; Chakarawet, K.; Gonzalez, M. I.; Olshansky, J. H.; Rigaut, S.; Long, J. R., A Terminal Fluoride Ligand Generates Axial Magnetic Anisotropy in Dysprosium Complexes. Angewandte Chemie International Edition 2018, 57 (7), 1933-1938.
    92. Li, M.; Wu, H.; Yang, Q.; Ke, H.; Yin, B.; Shi, Q.; Wang, W.; Wei, Q.; Xie, G.; Chen, S., Experimental and Theoretical Interpretation on the Magnetic Behavior in a Series of Pentagonal-Bipyramidal DyIII Single-Ion Magnets. Chemistry - A European Journal 2017, 23 (70), 17775-17787.
    93. Peng, Y.; Singh, M. K.; Mereacre, V.; Anson, C. E.; Rajaraman, G.; Powell, A. K., Mechanism of magnetisation relaxation in {MIII2DyIII2} (M = Cr, Mn, Fe, Al) “Butterfly” complexes: how important are the transition metal ions here? Chemical Science 2019, 10 (21), 5528-5538.
    94. Langley, S. K.; Wielechowski, D. P.; Chilton, N. F.; Moubaraki, B.; Murray, K. S., A Family of {CrIII2LnIII2} Butterfly Complexes: Effect of the Lanthanide Ion on the Single-Molecule Magnet Properties. Inorganic Chemistry 2015, 54 (21), 10497-10503.
    95. Jiang, L.; Liu, B.; Zhao, H.-W.; Tian, J.-L.; Liu, X.; Yan, S.-P., Compartmental ligand approach for constructing 3d–4f heterometallic [CuII5LnIII2] clusters: synthesis and magnetostructural properties. CrystEngComm 2017, 19 (13), 1816-1830.
    96. Ge, Y.; Qin, Y.; Cui, Y.; Pan, Y.; Huang, Y.; Li, Y.; Liu, W.; Zhang, Y.-Q., Dinuclear Lanthanide Complexes Based on a Schiff-base Ligand: Free Lattice Solvent Inducing the Single Molecule Magnet Behavior of Dy2 Compound. Chemistry: An Asian Journal 2018, 13 (23), 3753-3761.
    97. Ge, J.-Y.; Chen, Z.; Wang, H.-Y.; Wang, H.; Wang, P.; Duan, X.; Huo, D., Thiacalix[4]arene-supported mononuclear lanthanide compounds: slow magnetic relaxation in dysprosium and erbium analogues. New Journal of Chemistry 2018, 42 (22), 17968-17974.
    98. Chilton, N. F.; Collison, D.; McInnes, E. J. L.; Winpenny, R. E. P.; Soncini, A., An electrostatic model for the determination of magnetic anisotropy in dysprosium complexes. Nature Communications 2013, 4, 2551.
    99. 張峻維, (2018) 「雙核、三核及六核銅-鑭系混金屬錯合物之單分子磁鐵合成、結構及磁性研究」,國立成功大學研究所碩士論文.
    100. Upadhyay, A.; Das, C.; Vaidya, S.; Singh, S. K.; Gupta, T.; Mondol, R.; Langley, S. K.; Murray, K. S.; Rajaraman, G.; Shanmugam, M., Role of the Diamagnetic Zinc(II) Ion in Determining the Electronic Structure of Lanthanide Single-Ion Magnets. Chemistry - A European Journal 2017, 23 (20), 4903-4916.
    101. Shen, F.-X.; Li, H.-Q.; Miao, H.; Shao, D.; Wei, X.-Q.; Shi, L.; Zhang, Y.-Q.; Wang, X.-Y., Heterometallic MIILnIII (M = Co/Zn; Ln = Dy/Y) Complexes with Pentagonal Bipyramidal 3d Centers: Syntheses, Structures, and Magnetic Properties. Inorganic Chemistry 2018, 57 (24), 15526-15536.

    無法下載圖示 校內:2024-08-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE