簡易檢索 / 詳目顯示

研究生: 陳柏成
Chen, Po-Cheng
論文名稱: 氮化鎵系列摻雜錳形成中間能帶太陽能電池之研究
Characterization of Mn-doped GaN-based Intermediate Band Solar Cell
指導教授: 許進恭
Sheu, Jinn-Kong
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2016
畢業學年度: 105
語文別: 英文
論文頁數: 140
中文關鍵詞: 中間能帶太陽能電池氮化鎵電子傳遞機制
外文關鍵詞: intermediate band solar cell, GaN, electron transfer mechanism
相關次數: 點閱:128下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是探討具錳摻雜氮化鎵、氮化鋁鎵、氮化銦鎵主動層應用於太陽能電池之光電特性。
    首先,在材料分析方面,我們利研究錳摻雜氮化鎵系列的表面形貌、結晶品質、光學特性、電子束縛能。在元件應用方面,我們已成功利用錳摻雜氮化鎵系列特性而設計中間能帶太陽能電池元件。
    我們已成功利用錳摻雜氮化鎵製作中間能帶太陽能電池元件,進行材料品質與特性分析,並透過外部量子效應、電致發光頻譜、雙雷射照光之電壓電流特性、低溫量測系統了解中間能帶吸收特性及載子傳遞機制。
    另一方面,我們亦成功利用錳摻雜氮化鋁鎵製作中間能帶太陽能電池元件,並比較分析主動層摻雜不同錳流量對於中間能帶太陽能電池之影響,預期能藉由中間能帶與價(導)電帶間的吸收而貢獻出額外的光電流,進而提升轉換效率,以及了解氮化鎵摻雜錳中間能帶太陽能電池其內部電子傳遞機制。
    最後我們成長錳摻雜氮化銦鎵製作中間能帶太陽能電池元件,雖然元件透過外部量子效應具有中間能帶的吸收特性,然而元件並未展現出如預期光電流增幅的特性。另外從低溫電致螢光頻譜中可發現摻雜錳會造成銦聚集,推測原因為氮化銦鎵磊晶成長時,錳與銦有相互競爭之現象,而形成富銦區域(In-rich),使得變溫電致螢光量測下發現有S-shape的現象,另外從變電流電致螢光也可發現隨著電流增大,其發光機制會逐漸由銦的侷限態變成價帶至導帶的載子躍遷所主導。

    The dissertation was focused on the optical and electrical characteristics of GaN-based intermediate band solar cells with Mn-doped GaN, Al1−xGaxN and In1−xGaxN absorption layer. The surface morphology, crystallinity, optical, electrical electron, binding energy of Mn-doped GaN-based material and devices were studied.
    As for the Mn-doped GaN and Mn-doped Al1−xGaxN intermediate band solar cell(IBSCs), we designed two kinds of experiments , which were two photo external quantum efficiency EQE、dual laser system to verify the existence of the intermediate band and analyze its electron transfer mechanism. And using high-concentrated illumination and low temperature to investigate the characteristics of Mn-doped GaN and Mn-doped Al1−xGaxN intermediate band solar cells (IBSCs) with high power light input
    The IBSCs with a Mn-doped In1−xGaxN absorption layer were presented in our previous work. However, their efficiencies were not as expected. The material quality of In1−xGaxN should be improved, and the photon absorption selectivity issue should be considered. The EL spectra anomalous temperature behavior of the peak energy is S-shaped (decrease–increase–decrease). As a result of the large lattice mismatch between InN and GaN, their low miscibility led to In aggregation and phase separation. Furthermore, significant strains were formed in the In1−xGaxN host material. Previous studies showed that spinodal decomposition produced quantum-dot-like structures around the designated In1−xGaxN layers. The cluster structures formed spatial potential fluctuations and localized energy states for trapping carriers. In addition to the issues of Jsc and Voc, achieving a high FF to improve cell efficiency is also a key point.

    摘要 I Abstract III 誌謝 V Contents VI Figure Captions IX Table Captions XIX Chapter 1 Introduction 1 1.1 Introduction to Photovoltaic Progress 1 1.2 Introduction to Intermediate-band Solar Cells (IBSCs) 1 1.3 Focus and Organization of Thesis 3 Chapter 2 The Growth of Mn-doped GaN-based Materials Characteristics 7 2.1 Introduction to Mn-doped GaN-Based Structure 7 2.2 Growth and Material of Mn-doped GaN Structure 7 2.2.1 Surface morphology and crystallinity of Mn-doped GaN samples 8 2.2.2 Optical property and material crystallinity of Mn-doped GaN samples 9 2.3 Growth and Material of Mn-doped InxGa1-xN Structure 10 2.3.1 Surface morphology and crystallinity of Mn-doped InxGa1-xN samples 11 2.3.2 Optical property and material crystallinity of Mn-doped InxGa1-xN samples 12 2.4 Growth and Material of Mn-doped AlxGa1-xN Structure 13 2.4.1 Surface morphology and crystallinity of Mn-doped AlxGa1-xN Samples 14 2.4.2 Optical property and material crystallinity of Mn-doped AlxGa1-xN samples 15 Chapter 3 Studying the Photovoltaic Characteristics of Mn-doped GaN Intermediate-band Solar Cells 32 3.1 Introduction to Mn-doped GaN Structure 32 3.2 Growth and Fabrication of Mn-doped GaN IBSCs Structure 32 3.3 Optical and Electrical Characterization of Mn-doped GaN IBSCs 34 3.4 Low Temperature and Concentrated Illumination Operation of Mn-doped GaN IBSCs 41 Chapter 4 Photovoltaic Characteristics of Mn-doped AlxGa1-xN Intermediate-band Solar Cells 70 4.1 Introduction to Mn-doped AlxGa1-xN/GaN and AlxGa1-xN/GaN Epitaxial Heterostructure 70 4.2 Growth and Fabrication of Mn-doped AlxGa1-xN IBSC Structure 71 4.3 Optical and Electrical Characterization of Mn-doped AlxGa1-xN Intermediate-band Solar Cells 73 4.4 Low-temperature and Concentrated-illumination Operation of Mn-doped AlxGa1-xN Intermediate-band Solar Cells 80 Chapter 5 Photovoltaic Characterization of Mn-doped InxGa1−xN Intermediate-band Solar Cells 111 5.1 Introduction to Mn-doped InxGa1−xN Intermediate-band Solar Cells 111 5.2 Growth and Fabrication of Mn-doped InxGa1−xN Intermediate-band Solar Cell Structure 111 5.3 Optical and Electrical Characterization of Mn-doped InxGa1−xN Intermediate-band Solar Cells 112 5.4 Low-temperature Operation of the Mn-doped InxGa1−xN Intermediate-band Solar Cells 117 Chapter 6 Conclusions and Future Work 128 6.1 Conclusions 128 6.2 Future Work 129 References 130 Publication List 136

    [1] W. G. Adams and R. E. Day, “The action of light on selenium,” Proc. R. Soc., vol. A 25, pp. 113–117, 1876.
    [2] D. M. Chapin, C. Fuller, and G. Pearson, "A new silicon p‐n junction photocell for converting solar radiation into electrical power," Journal of Applied Physics, vol. 25, pp. 676-677, 1954.
    [3] M. Prince, "Silicon solar energy converters," Journal of Applied Physics, vol. 26, pp. 534-540, 1955.
    [4] A. Luque and A. Martí, "Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels," Physical Review Letters, vol. 78, pp. 5014-5017, 1997.
    [5] L. Cuadra, A. Marti, and A. Luque, "Present status of intermediate band solar cell research," Thin Solid Films, vol. 451, pp. 593-599, Mar 22 2004.
    [6] A. Luque, A. Marti, N. Lopez, E. Antolin, E. Canovas, C. Stanley, et al., "Experimental analysis of the quasi-Fermi level split in quantum dot intermediate-band solar cells," Applied Physics Letters, vol. 87, p. 083505, Aug 22 2005.
    [7] A. Luque and A. Martí, "The intermediate band solar cell: progress toward the realization of an attractive concept," Adv Mater, vol. 22, pp. 160-74, Jan 12 2010.
    [8] W. G. Hu, T. Inoue, O. Kojima, and T. Kita, "Energy band structure and the half-filling of the intermediate band in the quantum-dot solar cell," physica status solidi (c), vol. 8, pp. 622-624, 2011.
    [9] J. K. Sheu, F. W. Huang, C. H. Lee, M. L. Lee, Y. H. Yeh, P. C. Chen, et al., "Improved conversion efficiency of GaN-based solar cells with Mn-doped absorption layer," Applied Physics Letters, vol. 103, p. 063906, Aug 5 2013.
    [10] S. Sonoda, "Partially filled intermediate band of Cr-doped GaN films," Applied Physics Letters, vol. 100, p. 202101, May 14 2012.
    [11] W. M. Wang, A. S. Lin, J. D. Phillips, and W. K. Metzger, "Generation and recombination rates at ZnTe:O intermediate band states," Applied Physics Letters, vol. 95, p. 261107, Dec 28 2009.
    [12] W. M. Wang, A. S. Lin, and J. D. Phillips, "Intermediate-band photovoltaic solar cell based on ZnTe:O," Applied Physics Letters, vol. 95, p. 011103, Jul 6 2009.
    [13] J. K. Sheu, F. W. Huang, Y. H. Liu, P. C. Chen, Y. H. Yeh, M. L. Lee, et al., "Photoresponses of manganese-doped gallium nitride grown by metalorganic vapor-phase epitaxy," Applied Physics Letters, vol. 102, p. 071107, Feb 18 2013.
    [14] A. Martí, C. Tablero, E. Antolín, A. Luque, R. P. Campion, S. V. Novikov, et al., "Potential of Mn doped In1−xGaxN for implementing intermediate band solar cells," Solar Energy Materials and Solar Cells, vol. 93, pp. 641-644, 2009.
    [15] C. Tablero, A. Martí, and A. Luque, "Ionization energy levels in Mn-doped InxGa1−xN alloys," Journal of Applied Physics, vol. 105, p. 033704, 2009.
    [16] W. Shockley and H. J. Queisser, "Detailed balance limit of efficiency of p‐n junction solar cells," Journal of applied physics, vol. 32, pp. 510-519, 1961.
    [17] M. A. Green, "Multiple band and impurity photovoltaic solar cells: general theory and comparison to tandem cells," Progress in Photovoltaics: Research and Applications, vol. 9, pp. 137-144, 2001.
    [18] A. S. Brown, M. A. Green, and R. P. Corkish, "Limiting efficiency for a multi-band solar cell containing three and four bands," Physica E: Low-dimensional Systems and Nanostructures, vol. 14, pp. 121-125, 2002.
    [19] T. Trupke, M. Green, and P. Würfel, "Improving solar cell efficiencies by down-conversion of high-energy photons," Journal of Applied Physics, vol. 92, pp. 1668-1674, 2002.
    [20] T. Trupke, M. Green, and P. Würfel, "Improving solar cell efficiencies by up-conversion of sub-band-gap light," Journal of Applied Physics, vol. 92, pp. 4117-4122, 2002.
    [21] N. Nepal, M. O. Luen, J. M. Zavada, S. M. Bedair, P. Frajtag, and N. A. El-Masry, "Electric field control of room temperature ferromagnetism in III-N dilute magnetic semiconductor films," Applied Physics Letters, vol. 94, p. 132505, Mar 30 2009.
    [22] T. Graf, M. Gjukic, M. S. Brandt, M. Stutzmann, and O. Ambacher, "The Mn3+/2+ acceptor level in group III nitrides," Applied Physics Letters, vol. 81, p. 5159, 2002.
    [23] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, "Optical properties of the deep Mn acceptor in GaN : Mn," Applied Physics Letters, vol. 80, pp. 1731-1733, Mar 11 2002.
    [24] A. Y. Polyakov, A. V. Govorkov, N. B. Smirnov, N. Y. Pashkova, G. T. Thaler, M. E. Overberg, et al., "Optical and electrical properties of GaMnN films grown by molecular-beam epitaxy," Journal of Applied Physics, vol. 92, pp. 4989-4993, Nov 1 2002.
    [25] T. Devillers, L. Tian, R. Adhikari, G. Capuzzo, and A. Bonanni, "Mn as Surfactant for the Self-Assembling of AlxGa1-xN/GaN Layered Heterostructures," Cryst Growth Des, vol. 15, pp. 587-592, Feb 4 2015.
    [26] J. I. Hwang, Y. Ishida, M. Kobayashi, H. Hirata, K. Takubo, T. Mizokawa, et al., "High-energy spectroscopic study of the III-V nitride-based diluted magnetic semiconductorGa1−xMnxN," Physical Review B, vol. 72, 2005.
    [27] X. L. Yang, Z. T. Chen, L. B. Zhao, W. X. Zhu, C. D. Wang, X. D. Pei, et al., "Structural, optical and magnetic properties of Ga1−xMnxN films grown by MOCVD," Journal of Physics D: Applied Physics, vol. 41, p. 245004, 2008.
    [28] R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, "Mn-related absorption and PL bands in GaN grown by metal organic vapor phase epitaxy," Physica B: Condensed Matter, vol. 308-310, pp. 30-33, 2001.
    [29] S. Y. Liu, J. K. Sheu, Y. C. Lin, S. J. Tu, F. W. Huang, M. L. Lee, et al., "Mn-doped GaN as photoelectrodes for the photoelectrolysis of water under visible light," Opt Express, vol. 20 Suppl 5, pp. A678-83, Sep 10 2012.
    [30] J. K. Sheu, G. C. Chi, and M. J. Jou, "Low-operation voltage of InGaN/GaN light-emitting diodes by using a Mg-doped Al0.15Ga0.85N/GaN superlattice," IEEE Electron Device Letters, vol. 22, pp. 160-162, 2001.
    [31] K. H. Chang, J. K. Sheu, M. L. Lee, S. J. Tu, C. C. Yang, H. S. Kuo, et al., "Inverted Al0.25Ga0.75N/GaN ultraviolet p-i-n photodiodes formed on p-GaN template layer grown by metalorganic vapor phase epitaxy," Applied Physics Letters, vol. 97, p. 013502, 2010.
    [32] M. L. Lee, J. K. Sheu, and C. C. Hu, "Nonalloyed Cr∕Au-based Ohmic contacts to n-GaN," Applied Physics Letters, vol. 91, p. 182106, 2007.
    [33] M. L. Lee, J. K. Sheu, W. C. Lai, S. J. Chang, Y. K. Su, M. G. Chen, et al., "GaN Schottky barrier photodetectors with a low-temperature GaN cap layer," Applied Physics Letters, vol. 82, p. 2913, 2003.
    [34] F. W. Huang, J. K. Sheu, S. J. Tu, P. C. Chen, Y. H. Yeh, M. L. Lee, et al., "Optical properties of Mn in regrown GaN-based epitaxial layers," Optical Materials Express, vol. 2, p. 469, 2012.
    [35] J. K. Sheu and G. C. Chi, "The doping process and dopant characteristics of GaN," Journal of Physics: Condensed Matter, vol. 14, pp. R657-R702, 2002.
    [36] J. Neugebauer and C. G. Van de Walle, "Gallium vacancies and the yellow luminescence in GaN," Applied Physics Letters, vol. 69, pp. 503-505, Jul 22 1996.
    [37] F. W. Huang, J. K. Sheu, M. L. Lee, S. J. Tu, W. C. Lai, W. C. Tsai, et al., "Linear photon up-conversion of 450 meV in InGaN/GaN multiple quantum wells via Mn-doped GaN intermediate band photodetection," Opt Express, vol. 19 Suppl 6, pp. A1211-8, Nov 7 2011.
    [38] S. Fleischer, C. D. Beling, S. Fung, W. R. Nieveen, J. E. Squire, J. Q. Zheng, et al., "Structural and defect characterization of GaAs and AlxGa1−xAs grown at low temperature by molecular beam epitaxy," Journal of Applied Physics, vol. 81, p. 190, 1997.
    [39] J. P. Han, M. R. Shen, W. W. Cao, A. M. R. Senos, and P. Q. Mantas, "Hopping conduction in Mn-doped ZnO," Applied Physics Letters, vol. 82, pp. 67-69, Jan 6 2003.
    [40] E. J. Tarsa, P. Kozodoy, J. Ibbetson, B. P. Keller, G. Parish, and U. Mishra, "Solar-blind AlGaN-based inverted heterostructure photodiodes," Applied Physics Letters, vol. 77, pp. 316-318, Jul 17 2000.
    [41] H. Hori, S. Sonoda, T. Sasaki, Y. Yamamoto, S. Shimizu, K. i. Suga, et al., "High-TC ferromagnetism in diluted magnetic semiconducting GaN:Mn films," Physica B: Condensed Matter, vol. 324, pp. 142-150, 2002.
    [42] T. Graf, S. T. B. Goennenwein, and M. S. Brandt, "Prospects for carrier-mediated ferromagnetism in GaN," Physica Status Solidi B-Basic Research, vol. 239, pp. 277-290, Oct 2003.
    [43] D. C. Look, D. C. Reynolds, W. Kim, O. Aktas, A. Botchkarev, A. Salvador, et al., "Deep-center hopping conduction in GaN," Journal of Applied Physics, vol. 80, p. 2960, 1996.
    [44] C. C. Yang, C. H. Jang, J. K. Sheu, M. L. Lee, S. J. Tu, F. W. Huang, et al., "Characteristics of InGaN-based concentrator solar cells operating under 150X solar concentration," Opt Express, vol. 19 Suppl 4, pp. A695-700, Jul 4 2011.
    [45] P. G. Linares, A. Marti, E. Antolin, I. Ramiro, E. Lopez, C. D. Farmer, et al., "Low-Temperature Concentrated Light Characterization Applied to Intermediate Band Solar Cells," Ieee Journal of Photovoltaics, vol. 3, pp. 753-761, Apr 2013.
    [46] F. W. Huang, J. K. Sheu, S. J. Tu, P. C. Chen, Y. H. Yeh, M. L. Lee, et al., "Optical properties of Mn in regrown GaN-based epitaxial layers," Optical Materials Express, vol. 2, p. 469, 2012.
    [47] S. Chichibu, K. Wada, and S. Nakamura, "Spatially resolved cathodoluminescence spectra of InGaN quantum wells," Applied physics letters, vol. 71, pp. 2346-2348, 1997.
    [48] Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita, and S. Nakamura, "Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm," Applied Physics Letters, vol. 70, pp. 981-983, 1997.
    [49] T. Hino, S. Tomiya, T. Miyajima, K. Yanashima, S. Hashimoto, and M. Ikeda, "Characterization of threading dislocations in GaN epitaxial layers," Applied Physics Letters, vol. 76, pp. 3421-3423, 2000.
    [50] Y. S. Lin, K. J. Ma, C. Hsu, S. W. Feng, Y. C. Cheng, C. C. Liao, et al., "Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells," Applied Physics Letters, vol. 77, pp. 2988-2990, 2000.
    [51] Y. H. Cho, G. Gainer, A. Fischer, J. Song, S. Keller, U. Mishra, et al., "“S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells," Applied Physics Letters, vol. 73, pp. 1370-1372, 1998.
    [52] P. G. Eliseev, P. Perlin, J. Lee, and M. Osiński, "“Blue” temperature-induced shift and band-tail emission in InGaN-based light sources," Applied physics letters, vol. 71, pp. 569-571, 1997.

    無法下載圖示 校內:2022-01-16公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE