| 研究生: |
蔡沛淇 Tsai, Pei-Chi |
|---|---|
| 論文名稱: |
基於都市風環境永續發展之風廊系統構建與應用 Construction and Application of Wind Corridor System based on Sustainable Development of Urban Ventilation Environment |
| 指導教授: |
林子平
Lin, Tzu-Pin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 永續城市 、熱島效應 、都市風環境 、通風廊道 、氣候監測應用 |
| 外文關鍵詞: | Sustainable Urbanism , Urban Heat Island Effect, Urban Ventilation Environment, Ventilation Corridor System, Climate Monitoring Applications |
| 相關次數: | 點閱:120 下載:46 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
快速都市化發展下,高密度開發導致水域及綠地減少,引發都市熱島問題,而另一個重要的成因,則是建築物密集、間距小,導致通風散熱不良。為了有效減緩都市熱島效應的惡化,目前全球已有多個城市正在實行都市風廊的建設,甚至針對風廊指認與規範有詳細的國家級準則。我國目前尚未推行系統化的架構原則與土地規範,因此在土地開發行為中將難以避免密集開發導致通風散熱不良。
本研究利用臺灣歷史氣候資料與地表分布狀態資料,以臺中市、臺北市為例,探討風廊系統在臺灣的城市規劃體系中可適用的實踐方法及政策路徑。首先,參考了氣候資料將城市地區之長年自然風勢進行季節與時序的歸納,並依此定義自然風廊。為了聚焦探討尺度至行人活動層,以建築物分布計算了地表粗糙長度(Roughness Length)作為空氣流動時的風阻指標,進而指認了全市與局部地區的都市風廊路徑,藉此錨定優化目標並提供改善建議。風廊的路徑被指認後,採用中央氣象局開放之歷史觀測資料與CFD模擬作為驗證工具,最終證實了本研究在臺中市與臺北市的指認成果是具發展潛力的。
本研究所建立之標準化的工作流程,未來將有助於都市微氣候改善政策的推動,並可納為都市發展的規劃和決策參考,保障都市的基本通風性。
The urban heat island effect (UHI), caused by urbanization and rapid economic development, poses significant challenges due to poor ventilation and heat dissipation in densely built urban areas. To address this issue, wind plays a crucial role in dissipating accumulated heat, reducing surface temperatures, and promoting air mixing. Ventilation corridor systems have emerged as a promising strategy to enhance ventilation and mitigate the UHI effect. However, different cities worldwide adopt diverse approaches to wind corridor construction, necessitating the development of tailored guidelines aligned with local urban planning frameworks.
This study focuses on Taichung City and Taipei City, utilizing climate and geographical data to identify natural wind corridors and construct city-wide and local ventilation corridors. The expert-validated assessment method, employing professional knowledge, relevant data, and land understanding, efficiently identifies optimal pathways for ventilation corridors. The results serve as valuable references for urban development planning, encompassing considerations such as ventilation rates, setbacks, land utilization, green space creation, and building regulations.
Alcoforado, M. J., Andrade, H., Lopes, A., & Vasconcelos, J. (2009). Application of climatic guidelines to urban planning: the example of Lisbon (Portugal). Landscape and urban planning, 90(1-2), 56-65.
Ashie, Y., Tokairin, T., Kono, T., & Takahashi, K. (2006). Numerical simulation of urban heat island in a ten-kilometre square area of central Tokyo. Annual report of the earth simulator center April, 45-48.
Ashie, Y., & Kono, T. (2011). Urban‐scale CFD analysis in support of a climate‐sensitive design for the Tokyo Bay area. International Journal of Climatology, 31(2), 174-188.
Barlag, A. B., & Kuttler, W. (1991). The significance of country breezes for urban planning. Energy and Buildings;(Switzerland), 15(3/4).
Bing, D., Zhaoyin, Y., Wupeng, D., Xiaoyi, F., Yonghong, L., Chen, C., & Yan, L. (2021, February). Cooling the city with “natural wind”: Construction strategy of Urban Ventilation Corridors in China. In IOP Conference Series: Earth and Environmental Science (Vol. 657, No. 1, p. 012009). IOP Publishing.
Bottema, M. (1997). Urban roughness modelling in relation to pollutant dispersion. Atmospheric Environment, 31(18), 3059-3075.
Cha, J. G., Jung, E. H., Ryu, J. W., & Kim, D. W. (2007). Constructing a Green Network to Alleviate the Urban Heat-Island Phenomenon: Focusing on Daegu Metropolitan City in Korea. na.
Chang, S., Jiang, Q., & Zhao, Y. (2018). Integrating CFD and GIS into the development of urban ventilation corridors: A case study in Changchun City, China. Sustainability, 10(6), 1814.
Chen, L., & Ng, E. (2011). Quantitative urban climate mapping based on a geographical database: A simulation approach using Hong Kong as a case study. International Journal of Applied Earth Observation and Geoinformation, 13(4), 586-594.
Eldesoky, A. H. M., Colaninno, N., & Morello, E. (2020). Mapping urban ventilation corridors and assessing their impact upon the cooling effect of greening solutions. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, 665-672.
Eum, J. H., Scherer, D., Fehrenbach, U., Köppel, J., & Woo, J. H. (2013). Integrating urban climate into urban master plans using spatially distributed information—The Seoul example. Land Use Policy, 34, 223-232.
Fang, X. Y., Cheng, C., Liu, Y. H., Du, W. P., Xiao, X. J., & Dang, B. (2015). A climatic environmental performance assessment method for ecological city construction: Application to Beijing Yanqi Lake. Advances in Climate Change Research, 6(1), 23-35.
Fang, Y., Gu, K., Qian, Z., Sun, Z., Wang, Y., & Wang, A. (2021). Performance evaluation on multi-scenario urban ventilation corridors based on least cost path. Journal of Urban Management, 10(1), 3-15.
Fang, Y., & Zhao, L. (2022). Assessing the environmental benefits of urban ventilation corridors: A case study in Hefei, China. Building and Environment, 212, 108810.
Gál, T., & Unger, J. (2009). Detection of ventilation paths using high-resolution roughness parameter mapping in a large urban area. Building and Environment, 44(1), 198-206.
Grimmond, C. S. B., Roth, M., Oke, T. R., Au, Y. C., Best, M., Betts, R., ... & Voogt, J. (2010). Climate and more sustainable cities: climate information for improved planning and management of cities (producers/capabilities perspective). Procedia Environmental Sciences, 1, 247-274.
Grunwald, L., Kossmann, M., & Weber, S. (2019). Mapping urban cold-air paths in a Central European city using numerical modelling and geospatial analysis. Urban Climate, 29, 100503.
Gu, K., Fang, Y., Qian, Z., Sun, Z., & Wang, A. (2020). Spatial planning for urban ventilation corridors by urban climatology. Ecosystem Health and Sustainability, 6(1), 1747946.
Guo, F., Zhang, H., Fan, Y., Zhu, P., Wang, S., Lu, X., & Jin, Y. (2018). Detection and evaluation of a ventilation path in a mountainous city for a sea breeze: The case of Dalian. Building and Environment, 145, 177-195.
Han, L., Zhao, J., Zhang, T., & Zhang, J. (2022). Urban ventilation corridors exacerbate air pollution in central urban areas: Evidence from a Chinese city. Sustainable Cities and Society, 87, 104129.
He, B. J. (2018). Potentials of meteorological characteristics and synoptic conditions to mitigate urban heat island effects. Urban climate, 24, 26-33.
He, B. J., Ding, L., & Prasad, D. (2019). Enhancing urban ventilation performance through the development of precinct ventilation zones: A case study based on the Greater Sydney, Australia. Sustainable Cities and Society, 47, 101472.
He, B. J., Ding, L., & Prasad, D. (2020). Relationships among local-scale urban morphology, urban ventilation, urban heat island and outdoor thermal comfort under sea breeze influence. Sustainable Cities and Society, 60, 102289.
He, X., Shen, S., Miao, S., Dou, J., & Zhang, Y. (2015). Quantitative detection of urban climate resources and the establishment of an urban climate map (UCMap) system in Beijing. Building and Environment, 92, 668-678.
Hsieh, C. M., & Huang, H. C. (2016). Mitigating urban heat islands: A method to identify potential wind corridor for cooling and ventilation. Computers, Environment and Urban Systems, 57, 130-143.
Huang, J., & Wang, Y. (2023). Identification of ventilation corridors through a simulation scenario of forest canopy density in the metropolitan area. Sustainable Cities and Society, 104595.
Katzschner, L. (1988). The urban climate as a parameter for urban development. Energy and Buildings, 11(1-3), 137-147.
Kagiya, K., & Ashie, Y. (2009, September). National research project on Kaze-no-michi for city planning: creation of ventilation paths of cool sea breeze in Tokyo. In Second international conference on countermeasures to Urban Heat Islands. Heat Island Group, Berkeley.
Kolokotsa, D., Psomas, A., & Karapidakis, E. (2009). Urban heat island in southern Europe: The case study of Hania, Crete. Solar Energy, 83(10), 1871-1883.
Kondo, J., & Yamazawa, H. (1986). Aerodynamic roughness over an inhomogeneous ground surface. Boundary-Layer Meteorology, 35, 331-348.
Kress, R. (1979). Regionale Luftaustauschprozesse und ihre Bedeutung für die räumliche Planung (Vol. 32). Bundesminister für Raumordnung, Bauwesen und Städtebau.
Kwok, Y. T., de Munck, C., Lau, K. K. L., & Ng, E. (2022). To what extent can urban ventilation features cool a compact built-up environment during a prolonged heatwave? A mesoscale numerical modelling study for Hong Kong. Sustainable Cities and Society, 77, 103541.
Lai, S., Zhao, Y., Fan, Y., & Ge, J. (2021). Characteristics of daytime land surface temperature in wind corridor: A case study of a hot summer and warm winter city. Journal of Building Engineering, 44, 103370.
Liu, Y., Fang, X., Cheng, C., Luan, Q., Du, W., Xiao, X., & Wang, H. (2016). Research and application of city ventilation assessments based on satellite data and GIS technology: a case study of the Yanqi Lake Eco‐city in Huairou District, Beijing. Meteorological Applications, 23(2), 320-327.
Liu, Y., Xuan, C., Xu, Y., Fu, N., Xiong, F., & Gan, L. (2022). Local climate effects of urban wind corridors in Beijing. Urban Climate, 43, 101181.
Luo, X., Yang, J., Sun, W., & He, B. (2021). Suitability of human settlements in mountainous areas from the perspective of ventilation: A case study of the main urban area of Chongqing. Journal of Cleaner Production, 310, 127467.
Ma, T., & Chen, T. (2022). Outdoor ventilation evaluation and optimization based on spatial morphology analysis in Macau. Urban Climate, 46, 101335.
Matzarakis, A., & Amelung, B. (2008). Physiological equivalent temperature as indicator for impacts of climate change on thermal comfort of humans. Seasonal forecasts, climatic change and human health: health and climate, 161-172.
Matzarakis, A., & Mayer, H. (1992). Mapping of urban air paths for planning in Munich. Wiss. Ber. Inst. Meteor. Klimaforsch. Univ. Karlsruhe, 16, 13-22.
Memon, R. A., & Leung, D. Y. (2010). Impacts of environmental factors on urban heating. Journal of Environmental Sciences, 22(12), 1903-1909.
Mohajerani, A., Bakaric, J., & Jeffrey-Bailey, T. (2017). The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. Journal of environmental management, 197, 522-538.
Ng, E. (2009). Policies and technical guidelines for urban planning of high-density cities–air ventilation assessment (AVA) of Hong Kong. Building and environment, 44(7), 1478-1488.
Ng, E., Yuan, C., Chen, L., Ren, C., & Fung, J. C. (2011). Improving the wind environment in high-density cities by understanding urban morphology and surface roughness: A study in Hong Kong. Landscape and Urban planning, 101(1), 59-74.
Oke, T. R. (2002). Boundary layer climates. Routledge.
Peng, F., Wong, M. S., Wan, Y., & Nichol, J. E. (2017). Modeling of urban wind ventilation using high resolution airborne LiDAR data. Computers, Environment and Urban Systems, 64, 81-90.
Qiao, Z., Xu, X., Wu, F., Luo, W., Wang, F., Liu, L., & Sun, Z. (2017). Urban ventilation network model: A case study of the core zone of capital function in Beijing metropolitan area. Journal of Cleaner Production, 168, 526-535.
Ren, C., Ng, E. Y. Y., & Katzschner, L. (2011). Urban climatic map studies: a review. International journal of climatology, 31(15), 2213-2233.
Ren, C., Lau, K. L., Yiu, K. P., & Ng, E. (2013). The application of urban climatic mapping to the urban planning of high-density cities: The case of Kaohsiung, Taiwan. Cities, 31, 1-16.
Ren, C., Yang, R., Cheng, C., Xing, P., Fang, X., Zhang, S., ... & Ng, E. (2018). Creating breathing cities by adopting urban ventilation assessment and wind corridor plan–The implementation in Chinese cities. Journal of Wind Engineering and Industrial Aerodynamics, 182, 170-188.
Scherer, D., Fehrenbach, U., Beha, H. D., & Parlow, E. (1999). Improved concepts and methods in analysis and evaluation of the urban climate for optimizing urban planning processes. Atmospheric Environment, 33(24-25), 4185-4193.
Shen, C., Shen, A., Cui, Y., Chen, X., Liu, Y., Fan, Q., ... & Wu, J. (2021). Spatializing the roughness length of heterogeneous urban underlying surfaces to improve the WRF simulation-part 1: A review of morphological methods and model evaluation. Atmospheric Environment, 118874.
Son, J. M., Eum, J. H., & Kim, S. (2022). Wind corridor planning and management strategies using cold air characteristics: The application in Korean cities. Sustainable Cities and Society, 77, 103512.
Su, N., Zhou, D., & Jiang, X. (2016). Study on the Application of Ventilation Corridor Planning in Urban New Area--A Case Study of Xixian New Area. Procedia Engineering, 169, 340-349.
Suder, A., & Szymanowski, M. (2014). Determination of ventilation channels in urban area: a case study of Wrocław (Poland). Pure and Applied Geophysics, 171, 965-975.
UNSW Research Group (2016) An Investigation into the Impact of the Urban Heat Island on the Energy Consumption and Environmental Quality of Buildings in Sydney and Shanghai. Final Report of the UNSW Research Group, Sydney, December 2016
Verein Deutscher Ingenieure (2015) Environmental meteorology-climate and air pollution maps for cities and regions. VDI-Guideline 3787, Part 1, Germany
Wang, W., Yang, T., Li, Y., Xu, Y., Chang, M., & Wang, X. (2020). Identification of pedestrian-level ventilation corridors in downtown Beijing using large-eddy simulations. Building and Environment, 182, 107169.
Wang, W., Wang, D., Chen, H., Wang, B., & Chen, X. (2022). Identifying urban ventilation corridors through quantitative analysis of ventilation potential and wind characteristics. Building and Environment, 214, 108943.
Wang, A., Zhang, M., Ren, B., Zhang, Y., Kafy, A. A., & Li, J. (2023). Ventilation analysis of urban functional zoning based on circuit model in Guangzhou in winter, China. Urban Climate, 47, 101385.
Wicht, M., & Wicht, A. (2018). LiDAR-based approach for urban ventilation corridors mapping. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(8), 2742-2751.
Wong, M. S., Nichol, J. E., To, P. H., & Wang, J. (2010). A simple method for designation of urban ventilation corridors and its application to urban heat island analysis. Building and Environment, 45(8), 1880-1889.
Xie, P., Liu, D., Liu, Y., & Liu, Y. (2020). A least cumulative ventilation cost method for urban ventilation environment analysis. Complexity, 2020.(a)
Xie, P., Yang, J., Wang, H., Liu, Y., & Liu, Y. (2020). A New method of simulating urban ventilation corridors using circuit theory. Sustainable Cities and Society, 59, 102162.(b)
Xie, P., Yang, J., Sun, W., Xiao, X., & Xia, J. C. (2022). Urban scale ventilation analysis based on neighborhood normalized current model. Sustainable Cities and Society, 80, 103746.
Xu, Y., Ren, C., Ma, P., Ho, J., Wang, W., Lau, K. K. L., ... & Ng, E. (2017). Urban morphology detection and computation for urban climate research. Landscape and urban planning, 167, 212-224.
Xu, Y., Wang, W., Chen, B., Chang, M., & Wang, X. (2021). Identification of ventilation corridors using backward trajectory simulations in Beijing. Sustainable Cities and Society, 70, 102889.
Yim, S. H. L., Fung, J. C. H., & Ng, E. Y. Y. (2014). An assessment indicator for air ventilation and pollutant dispersion potential in an urban canopy with complex natural terrain and significant wind variations. Atmospheric Environment, 94, 297-306.
Ying, S., Wang, M., Zhang, W., Sun, H., & Li, C. (2023). City-scale ventilation analysis using 3D buildings with Guangzhou case. Urban Climate, 49, 101471.
Yuan, C., Ren, C., & Ng, E. (2014). GIS-based surface roughness evaluation in the urban planning system to improve the wind environment–A study in Wuhan, China. Urban Climate, 10, 585-593.
Zheng, Z., Ren, G., Gao, H., & Yang, Y. (2022). Urban ventilation planning and its associated benefits based on numerical experiments: A case study in beijing, China. Building and Environment, 222, 109383.
科技部臺灣氣候變遷推估資訊與調適知識平台(TCCIP),2022。TReAD臺灣歷史氣候資訊,檢自:https://tccip.ncdr.nat.gov.tw/。
香港特別行政區政府規劃署,「香港城市設計指引」香港規劃標準與準則,第十一章,第34頁,香港(2015)。
林子平等,2022。臺中市都市計畫新市政中心專用區通盤檢討,臺中市政府委託。
林子平等,2022。臺北市戶外熱環境特徵調查及熱舒適提昇計畫,臺北市政府委託。
林子平等,2022。永續城鄉宜居環境-臺中都市熱島效應空間策略計畫,臺中市政府委託。
林子平等,2022。水湳機場原址整體開發區細部計畫通盤檢討規劃案熱島調適策略規劃作業,龍邑工程顧問股份有限公司委託。
林子平、蔡沛淇、歐星妤、張洲滄,2023。熱島效應緩解策略之風廊系統的指認與應用. 土木水利, 50(1), 24-29.
臺中市政府,2020。臺中市都市更新建築容積獎勵辦法。
蔡沛淇、歐星妤、張洲滄、林子平,2022。臺中都市熱島效應緩解策略之風廊系統的指認與建構,臺灣建築學會第34屆建築研究成果發表會,桃園市。
中国气象局,「气候可行性论证规范—城市通风廊道」,中华人民共和国气象行业标准,QX/T 437-2018,中国(2018)。
北京市规划和自然资源委员会,「北京城市总体规划(2016年—2035年)」,第二章,中国(2017)。
房小怡、李磊、刘宛、任超、王佳文、程宸、...、刘勇洪(2021)我国城市通风廊道研究与实践进展,生态学杂志,40(12), 4088.
颜彭莉(2016)城市发展要考虑气候承载力《城市适应气候变化行动方案》发布. 环境经济,(3), 38-38.
国土交通省国土技術政策総合研究所(NILIM) (2023, May 16). ヒートアイランド対策に資する「風の道」を活用した都市づくりガイドライン. http://www.nilim.go.jp/lab/bcg/siryou/tnn/tnn0730.htm