簡易檢索 / 詳目顯示

研究生: 王百祿
Wang, Bai-Lu
論文名稱: ARIMA與適應性SVM之混合模型於股市指數預測之研究
A Hybrid ARIMA and Adaptive SVM Model in Forecasting Stock Market Index
指導教授: 黃宇翔
Huang, Yeu-Shiang
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理研究所
Institute of Information Management
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 66
中文關鍵詞: 時間序列ARIMA預測支援向量機
外文關鍵詞: Support vector machine, Forecasting, ARIMA, Time series
相關次數: 點閱:162下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 股市指數是一個高度不穩定、複雜且難以預測的時間序列資料,時間序列的預測,傳統上可用統計模型,近來則常用類神經網路技術。自我迴歸整合移動平均(auto regression integrated moving average, ARIMA)模型在線性資料預測有極佳之效能,而支援向量機(support vector machine, SVM)模型則在非線性資料預測有極佳之效能,然而傳統的支援向量機並沒有將時間的影響考量進去,故本研究將原本固定的ε係數動態調整為隨時間遞減的形式,並以實例驗證此調整後的支援向量機與ARIMA之混合模型的使用可得到較兩最佳模型之更優越的效能。因此本研究假設股價之走勢為不受非市場因素影響,亦不受人為操縱影響的隨機過程,並以道瓊工業指數過去一年的走勢為實驗資料樣本,首先以ARIMA模型預測道瓊工業指數,得到一組序列預測值與殘差項序列,將此組殘差序列以下降ε支援向量機(ε-descending support vector machine,ε-DSVM)模型訓練,得到殘差項預測值,將ARIMA模型的預測值與殘差項序列的預測值加總即為混合模型之預測值。模型訓練完成後,將樣本資料均等份切割為互斥的五個子集,並進行交叉驗證,計算各個子集的均方差(mean square error, MSE)、絕對誤差(mean absolute error, MAE)與方向對稱性(directional symmetry, DS)等三項指標衡量它的效能。實驗結果發現,混合模型的預測效能及精確度,均較ARIMA、SVM與ARIMA+SVM三個簡單模型為佳,故混合模型可大幅度地改善預測效能,並大量減少預測誤差。

    The stock market index is unstable, complicated, and unpredictable. Statistical models are used for predicting the time series in tradition. Recently, neural networks have been successfully used for modeling financial time series data. The auto regression integrated moving average (ARIMA) model has good performance in predicting linear data, and the support vector machine (SVM) has good performance in predicting nonlinear data. The adaptive SVM are obtained by a simple modification of the regularized risk function in support vector machines, whereby the recent ε-insensitive errors are penalized more heavily than the distant ε-insensitive errors. An experiment is validated to show that the hybrid adaptive SVM and ARIMA model can result in more superior performance than the two individual models. The data sample is composed of the past one year of Dow Jones industrial index. The ARIMA model is used to predict Dow Jones Industrial Index in the beginning, and then two series of estimates and residuals are obtained. Using the ε-descending support vector machine (ε-DSVM) model to train the residual series would get a series of residual estimates. At the end of training process, the data sample is divided into five exclusive partitions to proceed the five-fold cross validation. Mean square error (MSE), mean absolute error (MAE), and directional symmetry (DS) are used to measure the performance of the proposed model. The result of experiment shows that the prediction effectiveness and accuracy of the hybrid model are better than ARIMA, SVM, and ARIMA+SVM models. The hybrid model could greatly improve the prediction performance and effectively decreases the prediction error.

    中 文 摘 要...............................................I 英 文 摘 要.............. ...............................II 誌 謝....... ...........................................III 目 錄....................................................IV 表 目 錄.................................................VI 圖 目 錄................................................VII 第一章 緒論...............................................1 第一節 研究背景...........................................1 第二節 研究動機...........................................2 第三節 研究目的...........................................3 第四節 研究流程...........................................3 第五節 論文架構...........................................5 第二章 文獻探討...........................................6 第一節 財務資料分析.......................................6 一、時間序列..............................................6 二、時間序列分析與預測....................................7 第二節 支援向量機.........................................9 一、基本概念.............................................10 二、支援向量機與類神經網路...............................12 三、支援向量機之應用與改善...............................13 第三節 支援向量機於財務資料預測..........................15 一、支援向量機與財務資料.................................16 二、時間序列預測混和之模型...............................17 第三章 ARIMA與適應性SVM之混和模式建構....................19 第一節 問題描述..........................................19 第二節 研究架構..........................................22 第三節 模式建構..........................................23 一、ARIMA模型............................................23 二、適應性支援向量機模型.................................28 三、混和模型.............................................33 第四章 實證研究..........................................37 第一節 資料描述..........................................37 第二節 道瓊工業指數分析..................................38 一、ARIMA模型建立流程....................................38 二、SVM模型參數選取與訓練過程............................41 三、結合ARIMA與ε-DSVM之預測結果..........................43 第三節 結果討論..........................................45 第五章 結論與建議........................................48 第一節 研究成果..........................................48 第二節 研究限制..........................................48 第三節 未來研究方向......................................49 參考文獻.................................................50 附錄一...................................................56 附錄二...................................................59 附錄三...................................................62

    中文部分
    詹琇伃,「結合ARIMA模式與倒傳遞網路以降低預測誤差」,國立成功大學工業與資訊管理研究所碩士論文,民93。
    王琡閔,「股價預測之統計模型」,國立中央大學統計研究所碩士論文,民90。

    英文部分
    Angulo, C., Parra, X. and Catala A. (2003), “K-SVCR. A support vector machine for multi-class classification,” Neurocomputing, 55, pp.57-77.
    Boser, B. E., Guyon, I. M. and Vapnik, V. N. (1992), “A training algorithm for optimal margin classifiers,” Proceedings of the fifth annual workshop on Computational learning theory, pp.144-152.
    Box, G. E. P. and Jenkins, G. (1970), Time Series Analysis: Forecasting and Control. San Francisco: Holden-Day.
    Burges C. J. C. (1998), “A Tutorial on Support Vector Machines for Pattern Recognition,” Data Mining and Knowledge Discovery, 2, pp.121-167.
    Campbell C. (2002), “Kernel methods:a survey of current techniques,” Neurocomputing, 48, pp.63-84.
    Cao L. J. (2003), “Support vector machines experts for time series forecasting,”
    Neurocomputing, 51, pp.321-339.
    Cawley, G. C. and Talbot N. L. C. (2002), “Improved sparse least-squares support vector machines,” Neurocomputing, 48, pp.1025-1031.
    Chen, W. H. and Shih, J. Y. (2006), “A study of Taiwan’s issuer credit rating systems using support vector machines,” Expert Systems with Applications, 30, pp.427-435.
    Chiang, W.C., Urban, T.L. and Baildridge, G. (1996), “A neural network approach to mutual fund net asset value forecasting,” Omega, 24(2), pp.205-215.
    Cortes, C. and Vapnik V. (1995), “Support vector networks,” Machine Learning, 20, pp.273-297.
    Crouzille, C., Lepetit, L. and Tarazi A. (2004), “Bank stock volatility, news and asymmetric information in banking an empirical investigation,” Journal of Multinational Financial Management, 14, pp.443-461.
    Freitas, N.D., Milo, M. and Clarkson, P. (1999), “Sequential support vector machines,” Proceedings of the 1999 IEEE Signal Processing Society Workshop, Madison, Wisconsin, USA, pp.31-40.
    Gavrishchaka , V. V. and Ganguli S. B. (2003), “Volatility forecasting from multiscale and high-dimensional market data,” Neurocomputing, 55, pp.285-305.
    Huang, W., Nakamori, Y. and Wang, S. Y. (2005), “Forecasting stock market movement direction with support vector machine,” Computers & Operations Research, 32, pp.2513-2522.
    Huang, Z., Chen, H., Hsu, C. J., Chen, W. H. and Wu, S. (2004), “Credit rating analysis with support vector machines and neural networks: a market comparative study,” Decision Support Systems, 37, pp.543-558.
    Ince, H. and Trafalis, T. B. (2004), “Kernel principal component analysis and support vector machines for stock price prediction,” Neural Networks, 2004. Proceedings. 2004 IEEE International Joint conference on, 3(25-29), pp.2053-2058.
    Ince, H. and Trafalis, T. B. (2006), “Kernel methods for short-term portfolio management,” Expert Systems with Applications, 30, pp.535-542.
    Kamruzzaman, J., Sarker, R. A. and Ahmad, I. (2003), “SVM based models for predicting foreign currency exchange rates,” Proceedings of the Third IEEE International Conference on Data Mining.
    Kim, K. J. (2003), “Financial time series forecasting using support vector machines,” Neurocomputing, 55, pp.307-319.
    Kim, K. J. (2006), “Artificial neural networks with evolutionary instance selection for financial forecasting,” Expert Systems with Applications, 30, pp.519-526.
    Kogan, L. (2004), “Asset prices and real investment,” Journal of Financial
    Economics, 73, pp.411-431.
    LeBaron, B., Arthur, W. B. and Palmer, R. (1999), “Time series properties of an artificial stock market,” Journal of Economic Dynamics & Control, 23, pp.1487-1516.
    Li, S. T., Shiue, W. and Huang, M. H. (2006), “The evaluation of consumer loans using support vector machines,” Expert Systems with Applications, 30, pp.772-782.
    Li, Y., Lin, C. and Zhang, W. (2006), “Improved sparse least-squares support vector machine classifiers,” Neurocomputing, 69, 1655-1658.
    Makridakis, S. and Hibon, M. (1979), “Accuracy of forecasting : an empirical investgation.,” Journal of the Royal Statistical Society, 142, pp.97-145.
    Oh, K. J. and Kim, K. J. (2002), “Analyzing stock market tick data using piecewise nonlinear model,” Expert Systems with Applications, 22, pp.249-255.
    Quah, T. S. and Srinivasan, B. (1999), “Improving returns on stock investment through neural network selection,” Expert Systems with Applications, 17, pp.295-301.
    Pai, P. F. and Lin, C. S. (2005), “A hybrid ARIMA and support vector machines model in stock price forecasting,” Omega, 33, pp.497-505.
    Refenes, A. N., Bentz, Y., Bunn, D. W., Burgess, A. N. and Zapranis, A. D. (1997), “Financial time series modeling with discounted least squares backpropagation,” Neurocomputing, 14, pp.123-138.
    Rojo-Álvarez, J. L., Martínez-Ramón, M., Prado-Cumplido, M. D., Artés-Rodríguez, A. and Figueiras-Vidal, A. R. (2004), “Support Vector Method for Robust ARMA System Identification,” IEEE Transactions On Signal Processing, 52(1), pp.155-164.
    Saad, E. W., Prokhorov, D. V. and Wunsch, D. C. (1998), “Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks,” IEEE Transactions On Neural Networks, 9(6), pp.1456-1470.
    Schmidt, M. (1996), “Identifying speaker with support vector networks,” Interface ’96 Proceedings, Sydney.
    Scholkopf, B., Sung, K.K., Burges, C. J. C., Girosi, F., Niyogi, P., Poggio, T. and Vapnik, V. N. (1997), “Comparing Support Vector Machines with Gaussian Kernels to Radial Basis Function Classifiers,” IEEE Transactions On Signal Processing, 45(11), pp.2758-2765.
    Suykens, J.A.K., Brabanter, J. D., Lukas, L. and Vandewalle, J. (2002), “Weighted least squares support vector machines: robustness and sparse approximation,” Neurocomputing, 48, pp.85-105.
    Tay, F. E. H. and Cao, L. J. (2001), “Application of support vector machines in financial time series forecasting,” Omega, 29, pp.309-317.
    Tay, F. E. H. and Cao, L. J. (2002), “Modified support vector machines in financial time series forecasting,” Neurocomputing, 48, pp.847-861.
    Thawornwong, S. and Enke, D. (2004), “The adaptive selection of financial and economic variables for use with artificial neural networks,” Neurocomputing, 56, pp.205-232.
    Thissen, U., Brakel, R. V., Weijer, A. P. D., Melssen, W. J. and Buydens L. M. C. (2003), “Using support vector machines for time series prediction,” Chemometrics and Intelligent Laboratory Systems, 69, pp.35–49.
    Valyon, J. and Horvath, G. (2004), “A sparse least squares support vector machine classifier,” Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on, 1(25-29), pp.543-548.
    Vapnik, V. N. (1999), “An Overview of Statistical Learning Theory,” IEEE Transactions On Neural Networks, 10(5), pp.988-999.
    Zhang, G. P. (2003), “Time series forecasting using a hybrid ARIMA and neural network model,” Neurocomputing, 50, pp.159-175.
    Zhang, G.Q. and Michael, Y.H. (1998), “Neural network forecasting of the British Pound=US Dollar Exchange Rate,” Omega, 26(4), pp.495-506.

    下載圖示 校內:2010-06-25公開
    校外:2012-06-25公開
    QR CODE