| 研究生: |
張一庭 Chang, Yi-Ting |
|---|---|
| 論文名稱: |
有限波形板上熱泳及電泳效應
對於微粒沈積之影響 Combined effects of thermophoresis and electrophoresis on particle deposition onto a finite wavy flat plate |
| 指導教授: |
陳朝光
Chen, Chao-Kuang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 樣線函數 、座標轉換 、電泳 、熱泳 、停滯流 、波形表面 |
| 外文關鍵詞: | thermophoresis, electrophoresis, coordinate transformation, cubic spline, wavy surface, stagnation flow |
| 相關次數: | 點閱:149 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文研究的主題在於分析熱泳和電泳效應對氣膠微粒沈積於有限平板表面與有限波形板表面之影響,所討論的板面流場為對稱停滯流,其流動型態為二維、不可壓縮及穩態之層流,此外,微粒沈積的傳輸機制則耦合對流、重力沈降、布朗擴散、熱泳及電泳效應。統制方程式之推導由完整的Navier-Stokes方程式著手,並配合座標轉換理論。經轉換後之統制方程式可將不規則邊界展開成一規則的計算平面,進而利用三次樣線交換方向定置法(SADI;Spline Alternating-Direction Implicit Method)求得數值解。
研究結果顯示,當微粒粒徑小於1微米時,微粒沈積速度是受到布朗擴散、熱泳及電泳效應的影響。若隨著粒徑愈小、溫度差愈大、電場愈強,則沈積速度愈大;當微粒粒徑大於1微米時,電泳效應逐漸減弱,因此微粒沈積速度是受到重力沈降和熱泳效應的影響。而隨著粒徑愈大、溫度差愈大,沈積速度就愈大。關於沈積表面的幾何形狀則會影響微粒沈積效應,使之呈現與表面類似的頻率,且當布朗擴散與熱泳為主要機制時,表面凸起與凹陷之位移的影響會隨波振幅及x軸增加而愈趨明顯。至於波形板的平均沈積率大約略高於平板的平均沈積率。
The subject of the study is to analyze the effects of thermophoresis and electrophoresis on aerosol particle deposition onto a finite flat-plate surface and a finite wavy-plate surface. The flow fields of plate surfaces discussed are both symmetric-stagnation flow. The flow is modeled as a two-dimensional, incompressible and steady-state laminar forced convective flow. Moreover, the transport mechanisms of particle deposition by convection, sedimentation, Brownian diffusion, thermophoresis and electrophoresis are coupled. The governing equations are derived from complete Navier-Stokes equation with the theory of coordinate transformation. The transformed governing equations can expand the irregular boundary into a calculable regular plane, and then solve it by using the spline alternating-direction implicit method(SADI).
Numerical results show that, when particle diameters are smaller than 1(micron), the particle deposition velocity is controlled by Brownian diffusion, thermophoresis and electrophoresis. If Particle diameters will decrease, temperature gradient will increase and the electric field will strengthen, the deposition velocity will increase. When particle diameters are bigger than 1(micron), the electrophoresis decreases gradually. The particle deposition velocity is controlled by sedimentation and thermophoresis. If Particle diameters and temperature gradient will increase, the deposition velocity will increase. About the geometric form of the deposition surface would influence the particle deposition and make it have a similar frequency with the surface. When Brownian diffusion and thermophoresis are the dominant transport mechanisms, the influence of the displacement from the lumpy surface will become greater with the increase of the wavy amplitude and x axis. Additionally, the mean deposition rate of the wavy plate would be higher than the flat plate.
Ahlbrg, J. H., Nilson, E. N. and Walsh, J. L., “The theory of splines and their application,” Academic Press, 1967.
Albasiny, E. L. and Hoskins, W. D., “Increase Accuracy cubic spline solutions to two-point boundary value problems,” J. Inst. Math. Applic., Vol. 9, pp. 47-55, 1972.
Batchelor, G. K., and Shen, C., “Thermophoretic deposition of particles in gas flowing over cold surfaces,” Journal of Colloid and Interface Science, Vol. 107, pp. 21-37, 1985.
Bai, H. and Biswas, P., “Deposition of lognormally distributed aerosols accounting for simultaneous diffusion, thermophoresis and coagulation,” Journal of Aerosol Science, Vol. 21, pp. 629-640, 1990.
Chawla, T. C., Leaf, G. Chen, W. L., and Grolmes, M. A., “The application of the collocation method using hermite cubic spline to nonlinear transient one-dimensional heat conduction problem,” ASME Journal of Heat Transfer, pp. 562-569, 1975.
Chen, C. K., “Application of cubic spline collocation method to solve transient heat transfer problem,” Heat Transfer in Thermal Systems Seminar-phase, N.C.K.U., Tainan, Taiwan, pp. 167-182, 1986.
Cooper, D. W., Perers, M. N. and Miller, R. J., “Predicted deposition of submicrometer particles due to diffusion and electrostatics in viscous axisymmetric stagnation-point flow,” Aerosol Science and Technology, Vol. 11, pp. 133-143, 1989.
Chiu, P. and Chou, H. M., “Free Convection in the Boundary Layer Flow of a Micropolar Fluid along a Vertical Wavy Surface,” Acta Mechanical., Vol. 101, pp. 161-174, 1993.
Cho, C., Hwang, J. and Choi, M., “Deposition of polydisperse particles in a Falkner-Skan wedge flow,” Journal of Aerosol Science, Vol. 27, pp. 249-261, 1996.
Chiou, M. C. “Theoretical predictions and experimental measurements of particle deposition on an isothermal vertical cylinder,” Journal of the Chinese Society of Mechanical Engineers, Vol. 19, pp. 323-333, 1998.
Fuchs, N. A., “The Mechanics of Aerosols,” Pergamon Press, Oxford, 1964.
Fyfe, D. J., “The use of cubic splines in the solution of two-point boundary value problems,” Computer Journal, Vol. 12, pp. 188-192, 1969.
Friedlander, S. K., “Smoke, Dust and Haze: Fundamentals of Aerosol Behavior,” Wiley, New York, 1977.
Friedlander, S. K., Fernandez de la Mora, J. and Gokoglu, S. A., “Diffusive leakage of small particles across the dust-free layer near a hot wall,” Journal of Colloid and Interface Science, Vol. 125, pp. 351-355, 1988.
Goren, S. L., “Thermophoresis of aerosol particles in the laminar boundary layer on a flat surface,” Journal of Colloid and Interface Science, Vol. 61, pp. 77-85, 1977.
Hales, J. M., Schwendiman, L. C. and Horst, T. W., “Aerosol transport in a naturally convected boundary layer,” International Journal of Heat and Mass Transfer, Vol. 15, pp. 1837-1850, 1972.
Homsy, G. M., Geyling, F. T. and Walker, K. L., “Blausius series for thermophoresis deposition of small particles,” Journal of Colloid and Interface Science, Vol. 83, pp.495-501, 1981.
Hwang, J. and Daily, J. W., “Electric field enhanced deposition inflame-synthesized materials manufacturing,” Journal of Aerosol Science, Vol. 26, pp. 5-18, 1995.
Isa, M. and Usmani, R. A., “Quintic spline solution of a boundary value problem,” International Journal of Computer Mathematics, Vol. 11, pp. 169-184, 1982.
Jain, M. K. and Azia, T., “Spline Function approximation for differential equations,” Journal of Computer Methods in Applied Mechanics and Engineering, Vol. 23, pp. 129-143, 1981.
Jain, M. K. and Azia, T., “Cubic spline solution of two-point boundary value problems with significant first derivatives,” Computer Methods in Applied Mechanics and Engineering, Vol. 39, pp. 83-91, 1983.
Liggett, J. A. and Salmon, J. R., “Cubic spline boundary element,” International Journal for Numerical Methods in Engineering, Vol. 17, pp. 543-556, 1981.
Milne-Thomson, L. M., “Theoretical Hydrodynamics, 5th ed.,” Macmillan, London, 1968.
Mills, A. F., Hang, X. and Ayazi, F. “The effect of wall suction and thermophoresis on aerosol-particle deposition from a laminar boundary layer on a flat plate,” International Journal of Heat and Mass Transfer, Vol. 27, pp.1110-1113, 1984.
Moulic, G. and Yao, L. S., “ Natural convection along a vertical wavy surface with uniform heat flux,” ASME Journal of Heat Transfer, Vol. 111, pp. 1106-1108, 1989.
Napolitano, M., “Efficient ADI and spline ADI Methods for the steady-state Navier-Stokes equations,” International Journal for Numerical Methods in Fluids, Vol. 4, pp. 1101-1115, 1984.
Opiolka, S., Schmidt, F. and Fissan, H., “Combined effects of electrophoresis and thermophoresis on particle deposition onto flat surfaces,” Journal of Aerosol Science, Vol. 25, pp. 665-671, 1994.
Peterson, T. W., Stratmann, F. and Fissan, H., “Particle deposition on wafers: a comparison between two modeling approaches,” Journal of Aerosol Science, Vol. 20, pp. 683-693, 1989.
Peters, M. H., Cooper, D. W. and Miller, R. J., “The effects of electrostatic and inertial forces on the diffusive deposition of small particles onto large disks: viscous axisymmetric stagnation point flow approximations,” Journal of Aerosol Science, Vol. 20, pp. 123-136, 1989.
Peters, M. H. and Cooper, D. W., “The effects of electrostatic forces on thermophoretic suppression of particle diffusional deposition onto hot surfaces,” Journal of Colloid and Interface Science, Vol. 140, pp. 48-56, 1990.
Rubin, S. G. and Graves, R. A., “Viscous flow solution with a cubic spline approximation,” Computers and Fluids, Vol. 1, No. 5, pp. 1-36, 1975.
Raggett, G. F., Stone, J. A. R., and Wisher, S. J., “The cubic spline solution of practical problems modeled by hyperbolic partial differential equations,” Computer Methods in Applied Mechanics and Engineering, Vol. 8, pp. 139-151, 1976.
Rubin, S. G. and Khosla, P. K., “Higher-order numerical solution using cubic splines,” AIAA Journal, Vol. 14, pp. 851-858, 1976.
Rubin, S. G. and Khosla, P. K., “Polynomial interpolation methods for viscous flow calculation,” Journal of Computational Physics, Vol. 24, pp. 217-244, 1977.
Reist, P. C., “Aerosol Science and Technology, 2nd ed.,” McGraw-Hill, New York, 1993.
Rees, A. S. and Pop, I. “A Note on Free Convection along a Vertical Wavy Surface in a Porous Medium,” ASME Journal of Heat Transfer, Vol. 116, pp. 505-508, 1994.
Shaw, D. T., “Fundamentals of Aerosol Science,” Wiley, New York, 1978.
Schlichting, H., “Boundary Layer Theory, 7th ed.,” McGraw-Hill, New York, 1979.
Stratmann, F., Fissan, H. and Peterson, T. W., “Particle deposition onto a flat surface from a point particle source,” J. Envir. Sci., Vol. 31, pp. 39-41, 1988.
Shen, C., “Thermophoretic deposition of particles onto cold surface of bodies in two dimensional and axi-symmetric flows,” Journal of Colloid and Interface Science, Vol. 127, pp. 104-115, 1989.
Talbot, L., Cheng, R. K., Scheffer, R. W. and Wills, D. P., “Thermophoresis of particle in a heated boundary layer,” Journal of Fluid Mechanics, Vol. 101, pp. 737-758, 1980.
Turner, J. R., Liguras, D. K. and Fissan, H. J., “Clean room applications of particle deposition from stagnation flow: electrostatic effects,” Journal of Aerosol Science, Vol. 20, pp. 403-417, 1989.
Tsai, R., Chang, Y. P. and Lin, T. Y., “Combined effects of thermophoresis and electrophoresis on particle deposition onto a wafer,” Journal of Aerosol Science, Vol. 29, No. 7, pp. 811-825, 1998.
Tsai, R. and Lin, Z. Y., “An approach for evaluating aerosol particle deposition from a natural convection flow onto a vertical flat plate,” Journal of Hazardous Materials, Vol. 69, pp. 217-227, 1999.
Tsai, R. and Liang, L. J., “Correlation for thermophoretic deposition of aerosol particles onto cold plates,” Journal of Aerosol Science, Vol. 32, pp. 473-487, 2001.
Wang, P. and Kahawita, R., “A two-dimensional numerical model of estuarine circulation using cubic splines,” Canadian Journal of Civil Engineering, Vol. 10, pp. 116-124, 1983.
Wang, P. and Kahawita, R., “Numerical integration of partial differential equations using cubic splines,” International Journal of Computer Mathematics, Vol. 13, No. 3-4, pp. 271-286, 1983.
Wang, P., Lin, S., and Kahawita, R., “The cubic spline integration technique for solving fusion welding problems,” Journal of Heat Transfer, Vol. 107, pp. 485-489, 1985.
White, F. M., “Viscous Fluid Flow, 2nd ed.,” McGraw-Hill, New York, 1991.
Yao, S. A. “Natural convection along a vertical wavy surface,” ASME Journal of Heat Transfer, Vol. 105, pp. 465-468, 1983.
Ye, Y., Pui, D. Y. H., Liu, B. Y. H., Opiolka, S., Blumhorst, S. and Fissan, H., “Thermophoretic effect of particle deposition on a free standing semiconductor wafer in a clean room,” Journal of Aerosol Science, Vol. 22, pp. 63-72, 1991.