簡易檢索 / 詳目顯示

研究生: 王彥智
Wang, Yen-Chih
論文名稱: 營建節能減碳數字的資料品質評估
Assessing the data quality of energy saving and carbon reduction numbers for construction projects
指導教授: 張行道
Chang, Andrew S.
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 72
中文關鍵詞: 營建節能減碳環境績效資料品質矩陣
外文關鍵詞: Construction projects, energy saving and carbon reduction, environmental performance, data quality matrix
相關次數: 點閱:110下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年營建業開始重視環境的永續,常計算節能、減碳數字或轉成金額表示成效,例如工程減少的水泥用量乘以0.89等於二氧化碳減少量,節省的用電量乘以單位電價等於減少的成本。此等數字有其簡單易懂的優點,但缺乏驗證,尤其資料的來源、假設說明不足,其數字可靠性待進一步加強。
    本研究評估營建工程節能減碳數字的資料品質,以加強工程永續成效的可靠性。首先回顧環境永續作法及成效之相關文獻,理論文獻較多觀念的敘述,個案研究則有較多實例計算,尤其對製造業的生產過程的節能減廢數字。接著提出節能減碳估算系統,考量營建工程生命週期,包括開採、製造及運送,屬製造業,而規劃/設計、施工、營運、回收/拆除等階段屬營建業,後續分析工程對環境的影響,提出個別階段之永續措施。
    然後以國內外十個案例,分析永續措施產生的永續成效,於節能減碳效益中有量化數字,例如爐石取代水泥量,多孔隙瀝青的效益成本比較,使用資料品質矩陣為工具,評估案例工程的資料品質。評估矩陣包括六個項目:資料取得方法、來源獨立性、代表性、時間相關性、地理相關性,和科技相關性。分數從1至5,5最好、1最差。歸類資料來源,分析過程中資料的困難與假設,提出六個面向資料的品質。
    研究結果顯示,評估項目之難易程度以取得方法和來源獨立性最難達到滿分(5分),因為永續成效計算方式難直接衡量且普遍缺乏第三者查驗證明。其次經由永續成效階段評估項目差異,發現製造階段之資料品質優於營建階段,全生命週期資料品質分數最低。最後檢視資料品質矩陣之適用性,以重要性與難度排序六個項目適用程度,發現資料品質若要好,前端來源資料的取得方法最重要,確認後帶入後續分析、計算,得出的成效數字也較可靠。

    In recent years, construction industry has started working on environmental sustainability, often calculating energy saving and carbon reduction numbers that are converted to money for expressing performance. For example, the reduced amount of cement multiplied by 0.89 is equal to the reduced amount of carbon dioxide; electricity savings multiplied by electricity unit price is equal to cost reduction. These numbers have the advantage of being easy to understand, but the lack of verification, in particular in the sources of data and assumptions, create a further need to enhance the reliability of numbers.
    This study assessed the data quality of energy saving and carbon reduction numbers for construction projects, to enhance the reliability of the construction sustainability performance. First, it reviewed relevant literature of environmental sustainability and performance. Theoretical literature has more narrative concepts, and case studies have more examples calculated, in particular, for manufacturing production process in saving energy and reducing waste numbers. Then it proposed the energy saving and carbon reduction assessment system, considering the construction project life cycle, including mining, manufacturing and transportation that are belonging to manufacturing; plan/design, construction, operation, and recovery/removal that are belonging to construction. Follow-up analysis and sustainability measures are proposed for individual stages in construction for considering the environmental impact.
    Then it used ten cases from domestic and foreign countries to analyze sustainability effects in energy saving and carbon reduction benefits with quantitative numbers. For example, some amount of cement can be replaced by slag; the cost effectiveness can be compared between the porous asphalt and traditional asphalt. The data quality matrix tool was used to assess the data quality for construction projects. Assessing matrix includes six dimensions: data acquisition method, independence of data supplier, representativeness, temporal correlation, geographical correlation, and technological correlation. Scores are from one to five, five represents the best, one the worst. During the data analysis process some difficulties came up and assumptions were made, giving data quality scores for the six dimensions.
    The analysis results show that the most difficult dimensions to achieve full marks (five points) are data acquisition method and independence of data supplier, because the sustainability performance for them is difficult to be directly measured and the third party verification is generally lacking. It was also found that manufacturing stage data has better quality than construction data; the whole life cycle data has the lowest quality. Finally, this research checked the data quality matrix applicability and sorted the applicability degree of the six dimensions by importance and difficulty. It was found that data quality can be improved the most with the data acquisition method. After the data are verified and brought into follow-up analysis and calculations the performance numbers can be more reliable.

    摘要 i Abstract ii 誌謝 iv 目錄 v 表目錄 viii 圖目錄 ix 第一章 緒論 1 1.1 研究動機與目的 1 1.2 研究範圍與限制 2 1.3 研究方法與流程 2 第二章 文獻回顧 5 2.1 能源使用與碳排放 5 2.1.1 營建綠色指導綱領 5 2.1.2 能源使用 7 2.1.3 碳足跡 7 2.1.4 環境永續作法 8 2.2 生命週期評估 9 2.2.1 環境汙染 9 2.2.2 環境成本 10 2.2.3 環境績效 10 2.3 永續成效確認 11 2.3.1 資料品質背景 11 2.3.2 評估資料品質工具 11 2.3.3 資料品質評估方法 13 第三章 節能減碳估算系統 15 3.1 常見的節能減碳說明與數據 15 3.1.1 能源燃料 16 3.1.2 二氧化碳的排放 16 3.1.3 材料量 17 3.1.4 資料來源 18 3.2 營建永續考量與作法 20 3.2.1 營建生命週期 21 3.2.2 營建永續材料與技術 22 3.2.3 營建減碳比例 24 3.2.4 營建案例 24 第四章 案例節能減碳資料品質 29 4.1 資料品質評估 29 4.1.1 質化與量化 29 4.1.2 品質矩陣 30 4.1.3 永續道路資料品質試評 31 4.2 相關永續案例 33 4.2.1 案例永續成效類型與階段 33 4.2.2 案例成效資料品質評估 37 第五章 節能減碳資料可靠性 41 5.1 國六減碳成效 41 5.1.1 基本資料與永續作法 41 5.1.2 成效數字說明 42 5.1.3 減碳成效計算 44 5.1.4 評估數字資料品質 45 5.2 國六鋪面效益 47 5.2.1 評估施工績效 48 5.2.2 評估經濟效益 49 5.2.3 效益計算與說明 50 5.2.4 評估效益數字資料品質 52 5.3 案例綜合分析 55 5.3.1 評估項目的難易程度 55 5.3.2 評估項目差異 56 5.3.3 資料品質矩陣的適用性 60 第六章 結論與建議 63 6.1結論 63 6.2建議 64 參考文獻 66 自述 72

    一、 英文部分
    1. Azapagic, A. (2003). “Systems Approach to Corporate Sustainability a General Management Framework.” Institution of Chemical Engineers, 81, pp. 303-316.
    2. Azapagic, A., Millington, A., and Collett, A. (2006). “A Methodology for integrating Sustainability Consideration into Process Design.” Institution of Chemical Engineers, 84, pp. 439-452.
    3. Bhamra, T. A. (2004). “Ecodesign:the search for new strategies in product development.” Institution of Mechanical Engineers, 218, pp. 557-569.
    4. Burritt, R. L., Herzig, C., and Tadeo, B. D. (2009). “Environmental Management Accouting for Cleaner Production: The Case of A Philippine Rice Mill.” Journal of Cleaner Production, 17, pp. 431-439.
    5. Chen, C., Habert, G., Bouzidi, Y., and Jullien, A. (2009). “Environmental impact of cement production: detail of the different processes and cement plant variability evaluation.” Journal of Cleaner Production, 18, pp. 478-485.
    6. Du, J., Han, W., and Peng, Y. (2009). “Life cycle greenhouse gases, energy and cost assessment of automobiles using magnesium from Chinese Pidgeon process.” Journal of Cleaner Production, 18, pp. 112-119.
    7. Finnie, B., Stuart, J., Gibson, L., and Zabriskie, F. (2009). “Balancing environmental and industry sustainability: A case study of the US gold.” Journal of Environmental Management, 90, pp. 3690-3699.
    8. Huntzinger, D. N., and Eatmon, T. D. (2009). “A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies.” Journal of Cleaner Production, 17, pp. 668-675.
    9. ISO 14001, Environmental management systems—Requirements with guidance for use, 2004.
    10. Jawjit, W., Kroeze, C., and Rattanapan, S. (2010). “Greenhouse gas emissions from rubber industry in Thailand.” Journal of Cleaner Production, 18, pp. 403-411.
    11. Jeong, I. T., and Lee, K. M. (2009). “Assessment of the Ecodesign Improvement Options Using the Global Warming and Economic Performance Indicators.” Journal of Cleaner Production, 17, pp. 1206-1213.
    12. Junnila, S., and Horvath, A. (2003). “Life-Cycle Environmental Effects of an Office Building.” Journal of Infrastructure systems, ASCE, 9(4), pp. 157-166.
    13. Kendall, A., and Chang, B. (2009). “Estimating life cycle greenhouse gas emissions from corn–ethanol: a critical review of current U.S. practices.” Journal of Cleaner Production, 17, pp. 1175-1182.
    14. Kuo, N. W., and Chen, P. H. (2009). “Quantifying energy use, carbon dioxide emission, and other environmental loads from island tourism based on a life cycle assessment approach.” Journal of Cleaner Production, 17, pp. 1324-1330.
    15. Lacasse, M. A. (1999). “Materials and Technology for Sustainable Construction.” Building Research & Information, 27(6), pp. 405-408.
    16. Lewandowska, A., Foltynowicz, Z. and Podlesny, A. (2004). “Comparative LCA of industrial objects.” The International Journal of Life Cycle Assessment, 9(2), pp. 86-89.
    17. Lindfors, L. G. et al. (1995). “Nordic Guidelines on Life Cycle Assessment.” Rep. Nord 1995:20, Nordic Council of Ministers, Copenhagen, Demark.
    18. McLellan, B. C., Corder, G. D., Giurco, D., and Green, S. (2009). “Incorporating Sustainable Development in the Design of Mineral Processing Operations— Review and Analysis of Current Approaches.” Journal of Cleaner Production, 17, pp. 1414-1425.
    19. Norgate, T., and Haque, N. (2010). “Energy and greenhouse gas impacts of mining and mineral processing operations.” Journal of Cleaner Production, 18, pp. 266-274.
    20. Pleanjai, S., Gheewala, S. H. and Garivait, S. (2009). “Greenhouse gas emissions from production and use of used cooking oil methyl ester as transport fuel in Thailand.” Journal of Cleaner Production, 17, pp. 873-876.
    21. Rebecca S.M., William D.T., Jorge G.D. (2004). “Field Evaluation of Porous Asphalt Pavement” Final Report, SQDH 2004-3, HL2004-6。
    22. Rouesseaux, P., Labouze, E., Suh, Y. J., Blanc, I., Gaveglia, V. and Navarro, A. (2001). “An overall assessment of Life Cycle Inventory quality.” The International Journal of Life Cycle Assessment, 6(5), pp. 299-306.
    23. Salazar, J., and Meil, J. (2009). “Prospects for carbon-neutral housing: the influence of greater wood use on the carbon footprint of a single-family residence.” Journal of Cleaner Production, 17, pp. 1563-1571.
    24. Silva, P. R. S. D., and Amaral, F. G. (2009). “An integrated methodology for environmental impacts and costs evaluation in industrial processes.” Journal of Cleaner Production, 17, pp. 1339-1350.
    25. Strong, D. M., Lee, Y. W. and Wang, R. Y. (1997). “Data quality in context.” Communication of the ACM, 40(5), pp. 103-110.
    26. United States Green Building Council. (USGBC). (2002). Green Building Rating System for New Construction and Major Renovations (LEED-NC), Version 2.1, Green Building Council, Washington, D.C.
    27. Weidema, B. P., Pedersen, R. L., and Drivsholm, T.S. (1995). “Life Cycle Screening of Food Products.” Danish Academy of Technical Science, Lyngby.
    28. Weidema, B. P., and Wesnaes, M. (1996). “Data Quality Management for Life Cycle Inventories—An Example for Using Data Quality Indicators.” Journal of Cleaner Production, 4(3-4), pp. 167-174.
    29. Wiedmann, T. and Minx, J. (2007), “A Definition of ‘Carbon Footprint’”, ISAUK Research Report 07-01
    30. Zhang, Z., Wu, X., Yang, X., and Zhu, Y. (2006). “BEPAS—A Life Cycle Building Environmental Performance Assessment Model.” Building and Environment, 41, pp. 669-675.
    二、 中文部分
    1. 工程會白皮書,永續公共工程-節能減碳政策白皮書,行政院公共工程委員會,2008年8月。
    2. 方文志,節能減碳案例(一)~國道六號工程,永續公共工程與節能減碳研討會,行政院公共工程委員會,2008。
    3. 內政部建築研究所,綠建築解說與評估手冊,2007更新版。
    4. 行政院公共工程委員會(民97),永續公共工程與節能減碳研討會論文集。
    5. 行政院公共工程委員會(民90),道路工程建立綠營建工程設計規範與設計準則。
    6. 台灣水泥工業同業公會,台灣區水泥工業概況,2005。
    7. 台灣醒報,2010年01月29日,http://www.awakeningtw.com/。
    8. 李芳齡譯,馬可.愛普斯坦著,企業永續發展指南,天下雜誌,2009年3月。
    9. 杜瑞澤,產品永續設計,亞太圖書出版社,2005。
    10. 吳凡,「土方工程施工環境影響評價研究」,清華大學工業碩士學位論文,中國,2007。
    11. 林志棟,「透水鋪面」工法性能實驗解析,內政部建築研究所,2003。
    12. 林憲德,綠色建築,詹氏書局,2006。
    13. 政府間氣候變遷委員會 (IPCC),國家溫室氣體清冊指南,2006。
    14. 政府間氣候變遷委員會 (IPCC),氣候變遷第四次評估報告,2007。
    15. 翁林欣慧(民96),節能技術發展對二氧化碳排放減量之評估,國立成功大學資源工程研究所碩士論文。
    16. 財團法人台灣營建研究院,預鑄建築工程實務,科技圖書股份有限公司,2000。
    17. 施勵行,資源再生與永續性社會,俊傑書局股份有限公司,2002。
    18. 郭文信(民88),台灣地區水泥業因應二氧化碳排放減量策略之模擬分析,國立成功大學資源工程研究所碩士論文。
    19. 陳屏甫(民94),國道預力混凝土橋與鋼橋生命週期成本評估個案之研究,國立中央大學碩士論文。
    20. 陳瑞玲(民90),建築廢棄物回收系統制度之研究,內政部建築研究所。
    21. 黃榮堯、林文雄、周南山、廖肇昌、蔡厚男、陳屏甫、曾詩雅、蔡宗益、楊宗達、施安餘(民97),97年度建立永續公共工程指標系統之研究。
    22. 張又升(民91),「建築物生命週期二氧化碳減量評估」,國立成功大學建築學系碩博士班博士論文。
    23. 張天久,營建材料總彙,詹氏書局,2005。
    24. 張行道、蔡雅雯、王彥智(民98),公路永續設計項目指標與評估方法之建立,中華顧問工程司研究報告,計畫編號98926。
    25. 楊維修(民85),水泥業溫室氣體減量潛力分析與評估,國立成功大學環境工程研究所碩士論文,台南。
    26. 楊英賢(民97),命週期評估與不確定性分析應用於火力電廠與燃料選擇,國立成功大學環境工程研究所碩士論文,台南。
    27. 曾俊達,台灣再生建材品質管理策略之研究,行政院國家科學委員會專題研究計畫成果報告,計畫編號NSC-95-2221-E-006-435,2006。
    28. 葉政黌(民93),「道路建設綠營建評估指標系統之研究」,國立中央大學碩士論文。
    29. 楊煦照(民85),建築物之耗能與環境衝擊解析,國立成功大學建築研究所碩士論文。
    30. 經濟部能源局,能源查核計畫,2009。
    31. 經濟部能源局,台灣能源統計年報,2006。
    32. 經濟部能源局,台灣能源平衡表,台北,2009。
    33. 鄭仁崇(民94),「國道高速公路排水性鋪面材料設計影響因素及成效之研究」,國立中央大學土木工程研究所,桃園。
    34. 潘乃欣等(民98),「國道排水性瀝青混凝土鋪面材料施工績效評估模式之建立」,技術學刊,第24卷,第1期,27-41頁。
    35. 潘吉齡(民96),高性能鋼材應用於建築結構之研究,內政部建築研究所。
    三、 網站資料
    1. http://www.epa.gov.tw/
    2. http://www.moeaec.gov.tw/
    3. http://www.walmart.com/
    4. http://www.pointcarbon.com/
    5. http://www.csc.com.tw/

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE