| 研究生: |
許家瑄 Hsu, Chia-Hsuan |
|---|---|
| 論文名稱: |
近五十年台灣周遭海域與北南海波候變化分析 Analysis on Wave Climate Variations of the Taiwan Waters and N. SCS in Recent 50 years |
| 指導教授: |
董東璟
Doong, Dong-Jiing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | WAVEWATCH III 、ERA5 、WRF 、波候 、氣候變遷 、波高變化率 |
| 外文關鍵詞: | WAVEWATCH III, ERA5, WRF, wave climate, climate change, wave height change rate |
| 相關次數: | 點閱:101 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
波候(Wave Climate)是指一段時間內特定海洋區域的波高、週期、方向和頻率等統計特徵,近數十年來氣候變遷加劇,台灣周遭海域波候是否有所變化值得探討。本研究採用 WAVEWATCH III 波浪模式(簡稱 WW3),並使用深水物理套組 ST6 參數,推算 1975 年至 2022 年共計 48 年間在台灣周遭海域的波浪變化,其中的風場輸入係比較了 WRF、ERA5 與 CCMP 三種風場,再和實測風速比較,並考慮時間和空間解析度後,決定同時使用 WRF (2006 至 2022 年)和 ERA5 (1975 至 2005 年)風場為波浪模式之驅動力。
波浪模擬結果以現場浮標觀測資料進行驗證,結果顯示以 WRF 和 ERA5 風場為輸入之波浪模擬結果相近且與資料浮標實測結果一致,使用前述兩個風場來模擬波高的平均絕對誤差分別為 0.33 和 0.41 公尺、相關係數分別為 0.92 和 0.87,對於長期波浪模擬,此結果令人滿意。
本研究分別探討台灣海峽、台灣東部海域以及北南海海域三個區位的波候變化,結果顯示:台灣海峽及北南海海域之平均波高每年增加 0.11 公分,台灣東部海域每年增加 0.32 公分左右;根據每十年的平均波高變化率顯示,氣候變遷對海況的影響隨時間愈來愈顯著,變化率逐年增加。本文進一步分析各季節的波候變化,結果顯示過去五十年來,冬季的波候變化較大,前述三海域的冬季平均波高每年增加 0.4 至 0.5公分;然而,在台灣海峽的夏季平均波高有下降的趨勢,這是否與颱風生成的變化有關值得後續進一步探討。另外,本文還探討波候變化是否有空間差異性,結果顯示不論在台灣海峽、台灣東部海域或北南海海域,代表惡劣海況的大波高範圍有由南向北且逐漸靠近台灣的趨勢。以上的波浪模擬分析結果對瞭解台灣周遭海域過去五十年來的海況長期變化趨勢提供了科學的佐證。
This study collects the open wind dataset from the public and evaluates its applicability to Taiwan waters with buoy observed data. The WAVEWATCH III wave model and the source term ST6 would be applied to calculate the sea conditions in the Taiwan waters and North of South China Sea in recent 50 years. Analysis through the trend of significant wave height in each sea area over the past 50 years is conducted by using linear regression. Among the above calculations, the annual average wave height has increased 0.11 cm per year in the Taiwan Strait and the N.SCS with 0.32 cm per year in eastern Taiwan water. This paper uses the change rate of average wave height per decade to explore the impact of climate change in various sea areas in the past 50 years. It is found that the impact of climate change in each sea area has become more and more obvious along with time. However, Taiwan has usually been hit by typhoons in summer and affected by northeast monsoon in winter. Therefore, this study further analyzed the wave climate changes in different seasons. The results show that wave climate in winter has been affected the most by climate change. The increase of average wave height in various sea areas can reach 0.4 cm to 0.5 cm during winter time. Due to climate change, typhoons gradually move to higher latitudes, and the average wave height in summer in the Taiwan Strait tends to decrease. In addition to the growth trend of wave heights, the distribution of wave heights may also vary with time because of climate change. In this study, the top 10% of the annual average wave heights are adopted to analyze the changes in the distribution of larger wave heights in various sea areas. The results show that no matter the Taiwan Strait, the eastern waters of Taiwan or the North-South China Sea, the areas with relatively high wave heights all move from south to north and gradually approach Taiwan.
吳柏緯(2020),「船難事件發生時之海象分析」,國立成功大學水利及海洋工程研究所碩士論文
[2] 易風,馮衛兵,曹海錦. (2018),「基於 ERA-Interim 資料近 37 年南海波浪時空特征分析」, 海洋預報,,(1), 44-51.
[3] 邱文博,李冠宇,徐俊臣,胡軼群,王亞丁,石洪源. (2021),「黄渤海海域波浪時空變化特征分析」,海洋科學,45(7): 1-8.
[4] 張紘聞(2019),「應用 WWIII 波浪模式於極端波高模擬之研究」,國立成功大學水利及海洋工程研究所碩士論文
[5] 黃文毅(2010),「台灣週邊海域波浪能源分佈特性之研究」,國立台灣大學工程科學及海洋工程研究所碩士論文
[6] Appendini, C. M., Torres-Freyermuth, A., Salles, P., López-González, J., & Mendoza, E. T. (2014). Wave climate and trends for the Gulf of Mexico: A 30-yr wave hindcast. Journal of Climate, 27(4), 1619-1632.
[7] Bacon, S., & Carter, D. T. (1991). Wave climate changes in the North Atlantic and North Sea. International Journal of Climatology, 11(5), 545-558.
[8] Banner, M. L. Peirson, W. L. (1998). Tangential stress beneath wind-driven air–water interfaces. Journal of Fluid Mechanics, 364, 115-145.
[9] Banner, M. L., Babanin, A. V., Young, I. R. (2000). Breaking probability for dominant waves on the sea surface. Journal of Physical Oceanography, 30(12), 3145-3160.
[10] Boukhanovsky, A. V., Lopatoukhin, L. J., Soares, C. G. (2007). Spectral wave climate of the North Sea. Applied Ocean Research, 29(3), 146-154.
[11] Babanin, A. (2009). Breaking of ocean surface waves. Acta Physica Slovaca. Reviews and Tutorials, 59(4), 305-535.
[12] Babanin, A. (2011). Breaking and Dissipation of Ocean Surface Waves. Cambridge: Cambridge University Press.doi:10.1017/CBO9780511736162
[13] Bi, F., Song, J., Wu, K., & Xu, Y. (2015). Evaluation of the simulation capability of the Wavewatch III model for Pacific Ocean wave. Acta Oceanologica Sinica, 34, 43-57.
[14] Beyramzadeh, M., Siadatmousavi, S. M., & Derkani, M. H. (2021). Calibration and skill assessment of two input and dissipation parameterizations in WAVEWATCH-III model forced with ERA5 winds with application to Persian Gulf and Gulf of Oman. Ocean Engineering, 219, 108445.
[15] Cottom P.D. and Carter, D.J.T. (1994) “Cross calibration of TOPEX, ERS-1, and geosat wave heights,” Journal of Geophysical Research, 99 (C12), pp. 25025-25033.
[16] Donelan, M. A., Babanin, A. V., Young, I. R., Banner, M. L. (2006). Wave-follower field measurements of the wind-input spectral function. Part II: Parameterization of the wind input. Journal of physical oceanography, 36(8), 1672-1689.
[17] Emanuel, K. (2001). Contribution of tropical cyclones to meridional heat transport by the oceans. Journal of Geophysical Research: Atmospheres, 106(D14), 14771-14781.
[18] Emanuel, K. (2005). Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436(7051), 686-688.
[19] Elsner, J. B., Kossin, J. P., & Jagger, T. H. (2008). The increasing intensity of the strongest tropical cyclones. Nature, 455(7209), 92-95.
[20] Goldenberg, S. B., Landsea, C. W., Mestas-Nuñez, A. M., & Gray, W. M. (2001). The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293(5529), 474-479.
[21] Giannaros, T. M., Melas, D., & Ziomas, I. (2017). Performance evaluation of the Weather Research and Forecasting (WRF) model for assessing wind resource in Greece. Renewable Energy, 102, 190-198.
[22] Hasselmann, K. (1962). On the non-linear energy transfer in a gravity-wave spectrum Part 1. General theory. Journal of Fluid Mechanics, 12(4), 481-500.
[23] Hasselmann, K. (1963a). On the non-linear energy transfer in a gravity wave spectrum Part 2. Conservation theorems; wave-particle analogy; irrevesibility. Journal of Fluid Mechanics, 15(2), 273-281.
[24] Hasselmann, K. (1963b). On the non-linear energy transfer in a gravity-wave spectrum. Part 3. Evaluation of the energy flux and swell-sea interaction for a Neumann spectrum. Journal of Fluid Mechanics, 15(3), 385-398.
[25] Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Ewing, J. A., Gienapp, H., Hasselmann, D. E., Kruseman, P., Meerburg, A., Müller, P., Olbers, D. J., Richter, K., Sell, W., Walden., H. (1973). Measurement of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP).Ergänzungsheft 8-12.
[26] Hasselmann, S., Hasselmann, K., Allender, J. H., Barnett, T. P. (1985). Computations and parameterizations of the nonlinear energy transfer in a gravity-wave specturm. Part II: Parameterizations of the nonlinear energy transfer for application in wave models. Journal of Physical Oceanography, 15(11), 1378-1391.
[27] Hargreaves, J. C. J. D. Annan, 1998: Integration of source terms in WAM. In Proceedings of the 5th International Workshop on Wave Forecasting and Hindcasting, 128–133.
[28] Hargreaves, J. C., Annan, J. D. (2001). Comments on“Improvement of the short-fetch behavior in the wave ocean model (WAM)”. Journal of Atmospheric and Oceanic Technology, 18(4), 711-715.
[29] Hwang, P. A. (2011). A note on the ocean surface roughness spectrum. Journal of Atmospheric and Oceanic Technology, 28(3), 436-443.
[30] Komen, G. J., Hasselmann, K., Hasselmann, K. (1984). On the existence of a fully developed wind-sea spectrum. Journal of physical oceanography, 14(8), 1271-1285.
[31] Kazeminezhad, M. H., & Siadatmousavi, S. M. (2017). Performance evaluation of WAVEWATCH III model in the Persian Gulf using different wind resources. Ocean Dynamics, 67, 839-855.
[32] Kim, T. R., & Lee, J. H. (2018). Comparison of high wave hindcasts during typhoon Bolaven (1215) using SWAN and WAVEWATCH III Model. Journal of Coastal Research, (85 (10085)), 1096-1100.
[33] Longodan, S., Cavaleri, L., Viswanahapalli, Y., & Hoteit, I. (2014). The Red Sea: a natural laboratory for wing and wave modelling. J Phys Oceanogr, 44, 4139-3159.
[34] Li, J., Chen, Y., Pan, S., Pan, Y., Fang, J., & Sowa, D. M. (2016). Estimation of mean and extreme waves in the East China Seas. Applied Ocean Research, 56, 35-47.
[35] Lu, W. S., Tseng, C. H., Hsiao, S. C., Chiang, W. S., & Hu, K. C. (2022). Future Projection for Wave Climate around Taiwan Using Weather-Type Statistical Downscaling Method. Journal of Marine Science and Engineering, 10(12), 1823.
[36] Mori, N., Yasuda, T., Mase, H., Tom, T., & Oku, Y. (2010). Projection of extreme wave climate change under global warming. Hydrological Research Letters, 4, 15-19.
[37] Mentaschi, L., Besio, G., Cassola, F., & Mazzino, A. (2015). Performance evaluation of Wavewatch III in the Mediterranean Sea. Ocean Modelling, 90, 82-94.
[38] Muhammed Naseef, T., & Sanil Kumar, V. (2020). Climatology and trends of the Indian Ocean surface waves based on 39‐year long ERA5 reanalysis data. International Journal of Climatology, 40(2), 979-1006.
[39] Phillips, O. M. (1984). On the response of short ocean wave components at a fixed wavenumber to ocean current variations. Journal of Physical Oceanography, 14(9), 1425-1433.
[40] Pontes, M. T. (1998). Assessing the European wave energy resource. J. Offshore Mech.Arct. Eng. 120(4): 226-231.
[41] Pomaro, A., Cavaleri, L., & Lionello, P. (2017). Climatology and trends of the Adriatic Sea wind waves: analysis of a 37‐year long instrumental data set. International Journal of Climatology, 37(12), 4237-4250.
[42] Qiao, W., Song, J., He, H., & Li, F. (2019). Application of different wind field models and wave boundary layer model to typhoon waves numerical simulation in WAVEWATCH III model. Tellus A: Dynamic Meteorology and Oceanography, 71(1), 1657552.
[43] Reul, N., Branger, H., Giovanangeli, J. P. (1999). Air flow separation over unsteady breaking waves. Physics of Fluids, 11(7), 1959-1961.
[44] Shemdin, O., Hasselmann, K., Hsiao, S. V., & Herterich, K. (1978). Nonlinear and linear bottom interaction effects in shallow water. In Turbulent fluxes through the sea surface, wave dynamics, and prediction (pp. 347-372). Springer, Boston, MA.
[45] Snyder, R. L., Dobson, F. W., Elliott, J. A., Long, R. B. (1981). Array measurements of atmospheric pressure fluctuations above surface gravity waves. Journal of Fluid mechanics, 102, 1-59.
[46] Seemanth, M., Bhowmick, S. A., Kumar, R., & Sharma, R. (2016). Sensitivity analysis of dissipation parameterizations in a third-generation spectral wave model, WAVEWATCH III for Indian Ocean. Ocean Engineering, 124, 252-273.
[47] Tolman, H. L. (1991). A third-generation model for wind waves on slowly varying, unsteady, and inhomogeneous depths and currents. Journal of Physical Oceanography, 21(6), 782-797.
[48] Tolman, H. L. (1992). Effects of numerics on the physics in a third-generation windwave model. Journal of physical Oceanography, 22(10), 1095-1111.81
[49] Tolman, H. L. Chalikov, D. (1996). Source terms in a third-generation wind wave model. Journal of Physical Oceanography, 26(11), 2497-2518.
[50] Tolman, H. L. (2002). Validation of WAVEWATCH III version 1.15 for a global domain. Tech. Note 213, NOAA/NWS/NCEP/OMB.
[51] Tolman, H. L. (2003). Optimum discrete interaction approximations for wind waves. Part 1: Mapping using inverse modeling. NOAA/NWS/NCEP/MMAB, Tech. Note 227.
[52] Tsagareli, K. N., Babanin, A. V., Walker, D. J., Young, I. R. (2010). Numerical investigation of spectral evolution of wind waves. Part I: Wind-input source function. Journal of Physical Oceanography, 40(4), 656-666.
[53] WAMDIG. (1988). The WAM model—A third generation ocean wave prediction model. Journal of Physical Oceanography, 18(12), 1775-1810.
[54] Wang, X.L. and Swail, V. (2002) “Trends of atlantic wave extremes as simulated in a 40-yr wave hindcast using kinematically reanalyzed wind fields,” Journal of Climate, Vol. 15, No. 9, pp. 1020-1035.
[55] Waters, R., Engström, J., Isberg, J., & Leijon, M. (2009). Wave climate off the Swedish west coast. Renewable energy, 34(6), 1600-1606.
[56] Young, I. R., Banner, M. L., Donelan, M. A., McCormick, C., Babanin, A. V., Melville, W. K., Veron, F. (2005). An integrated system for the study of wind-wave source terms in finite-depth water. Journal of Atmospheric and Oceanic Technology, 22(7), 814-831.
[57] Zieger, S., Babanin, A. V., Rogers, W. E., Young, I. R. (2015). Observation-based source terms in the third-generation wave model WAVEWATCH. Ocean Modelling, 96, 2-2