簡易檢索 / 詳目顯示

研究生: 李昇展
Li, Sheng-Chan
論文名稱: 熱硬化潛伏性環氧樹脂配方與氣相成長奈米碳纖維強化環氧樹脂複合材料於導電及結構應用之研究
Latent Heat-curable Epoxy Compositions and Vapor Grown Carbon Nanofibers Reinforced Epoxy Composites For Electrical and Mechanical Applications
指導教授: 許聯崇
Hsu, Lien-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 147
中文關鍵詞: 環氧樹脂氣相成長奈米碳纖維之改質氣相成長奈米碳纖維/環氧樹脂複合材料
外文關鍵詞: epoxy resin, functionalized vapor grown carbon nanofiber, vapor grown carbon nanofiber/epoxy composites
相關次數: 點閱:135下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要分成兩個部分:
    第一部分:為開發新配方熱硬化環氧樹脂,藉由改變硬化促進劑及添加抑制劑,成功開發出新配方-實驗室配方3(D),該配方擁有與明安公司提供的原配方近似之熱硬化溫度及玻璃轉移溫度,卻擁有比明安配方還穩定的儲藏期限。透過DSC恆溫動力學之分析,發現實驗室配方3(D)之活化能約高於明安配方,但是在適當的加工溫度下,實驗室配方3(D)能夠以較短的加工時間完成硬化交聯反應,可降低加工成本。最後經過明安廠內的流變儀及離型紙沾黏測試後,實驗室配方3(D)已經順利在明安廠內生產線上進行大量連續生產。
    第二部分:選用美國Applied Science, Inc及日本Showa Denko兩家公司生產的奈米碳纖維添加於環氧樹脂中,比較不同公司生產的碳纖維對於複合材料的影響。藉由SEM、FT-IR及化學分析電子光譜儀之分析,證實能夠以Friedel-Crafts acylation的反應將4-胺基苯甲酸接枝於Showa Denko之奈米碳纖維表面。改質的奈米碳纖維藉由SEM的分析可以確認ASI奈米碳纖維2小時酸洗、2小時酸洗接種胺基及Showa Denko之奈米碳纖維接枝4-胺基苯的改質方式都可以使奈米碳纖維表面上擁有能夠參與環氧樹脂硬化交聯反應的官能基,使奈米碳纖維與環氧樹脂之界面產生共價鍵,提升界面相依性。
    由SEM及導電度量測之結果,證實添加分散液能夠促進奈米碳纖維在環氧樹脂中的分散,故在有添加分散液製備的複合材料試片,其percolation threshold值出現在1 wt%,未添加分散液製備的複合材料試片的percolation threshold值出現在2 wt%。本研究中所製備出來的導電度試片能應用於靜電消散(Electrostatic Discharge,ESD)材料。另外本研究也發現以較低黏度的環氧樹脂製備複合材料試片比高黏度的環氧樹脂製備複合材料試片擁有較高的導電度,證實環氧樹脂的黏度、奈米碳纖維的分散度及複合材料試片的性質有密切的關連性。
    經由拉伸測試發現Showa Denko之奈米碳纖維/低黏度配方複合材料機械性質隨著奈米碳纖維添加量有上升的趨勢,但ASI奈米碳纖維/低黏度環氧樹脂複合材料在添加量達1 wt%有最佳的機械強度,添加量上升到2 wt%後,因分散不佳的關係使機械性質開始下降。另外,在相同都是0.5 wt%奈米碳纖維/低黏度環氧樹脂複合材料,ASI奈米碳纖維/低黏度配方明顯比Showa Denko奈米碳纖維/低黏度配方擁有更優異的機械性質,這是因為ASI奈米碳纖維本身擁有較高的長寬比。

    The dissertation is divided into two parts:
    Part 1: The development of a new latent heat-curable epoxy composition.
    The Lab composition 3(D) has been developed for the demand from Ming-An Company. The Lab composition 3(D)’s curing temperature and glass transition temperature (Tg) are close to the composition provided by Ming-An Company, but its pot life is more stable than the Ming-An composition. From DSC isothermal curing kinetics, we found out that the Lab composition 3(D)’s activation energy is a little higher than the Ming-An composition, but its curing time is shorter than the Ming-An composition of the curing is in an appropriate temperature which can cut down the processing cost. The Lab composition 3(D) passed the rheometer and release paper test measured in Ming-An Company. The pilot run of Lab composition 3(D) has been
    successfully accomplished.
    Part 2: The study of vapor grown carbon nanofiber/epoxy composites.
    Two kinds of vapor grown carbon nanofiber were obtained from Applied Science and Showa Denko; They were mixed with epoxy resin to prepare composite materials. Showa Denko’s vapor grown carbon nanofibers were functionalized with 4-aminobenzoic acid in polyphosphoric acid/phosphorous phentoxide medium via Friedel-Crafts acylation reaction to afford aminobenzoyl-functionalized VGCNFs. All functionalized VGCNFs such as ASI-VGCNFs acid treatment for 2 hours, ASI-VGCNFs acid treatment for 2 hours then grafted amino groups and Showa Denko-VGCNFs functionalized with 4-aminobenzoic acid have enough functional groups to participate in the epoxy curing process, therefore the SEM images obtained from the fracture surfaces of composites displayed a good interfacial boundary between
    functionalizedVGCNFs and epoxy matrix.
    From the results of SEM and conductivity measurement, the VGCNFs were well dispersed in epoxy matrix with a dispersion, such as acetone. The percolation threshold of the composites with a dispersion was 1 wt% of VGCNFs and the percolation threshold of composites without a dispersion was 2 wt% VGCNFs. The composite specimen produced in this study can be classified as electrostatic discharge materials. Additionally, the VGCNFs/low viscosity epoxy resin composites had higher conductivities than the VGCNFs/Ming-an epoxy resin composites. The composites’ properties are highly related to the viscosity of epoxy resin and the dispersion of VGCNFs.
    The tensile test results show the mechanical properties of Showa Denko-VGCNFs/low viscosity epoxy resin composites increased as the proportions of VGCNFs increased, but the mechanical properties of ASI-VGCNFs/low viscosity epoxy resin composite reached a maximum at 1wt% of VGCNFs and then dropped down at 2wt% of VGCNFs owing to the aggregation of VGCNFs. Additionally, the mechanical properties of 0.5 wt%ASI-VGCNFs/low viscosity epoxy resin composites are better than the Showa Denko -VGCNFs/low viscosity epoxy resin composites,
    due to the high aspect ratio of ASI-VGCNFs.

    摘要 I ABSTRACT III 誌謝 V 總目錄 VII 圖目錄 XII 表目錄 XVIII SCHEME 目錄 XIX 第1章 緒論 1 1-1 前言 1 1-2 研究動機 7 第2章 文獻回顧與原理 9 2-1 環氧樹脂 9 2-1-1 環氧樹脂特性 9 2-1-2 熱硬化型環氧樹脂之硬化 12 2-1-3 硬化劑胺類之硬化機制 15 2-2 潛伏性熱硬化環氧樹脂 18 2-2-1 三氟化硼-胺複合物 19 2-2-2 室溫離子液體-咪唑鹽 21 2-2-3 雙氰胺 24 2-2-4 雙氰胺/N-芳香基-N’,N’-二烷基脲 25 2-2-5 硬化反應動力學 31 2-3 奈米碳纖維 35 2-3-1 碳纖維分類 37 2-3-2 氣相成長奈米碳纖維 39 2-4 氣相成長奈米碳纖維/環氧樹脂複合材料 41 2-4-1 氣相成長奈米碳纖維/環氧樹脂複合材料配製製程 41 2-4-1-1 熔融混摻(Melt mixing) 42 2-4-1-2 溶液混摻(Solution processing) 46 2-4-2 氣相成長奈米碳纖維之改質與其環氧樹脂複合材 49 第3章 實驗步驟及分析裝置 54 3-1 實驗用藥品與儀器 54 3-1-1 藥品 54 3-1-2 實驗儀器 56 3-2 潛伏性熱硬化環氧樹脂之配製 57 3-2-1 明安環氧樹脂配方主劑之配製 57 3-2-2 硬化劑、硬化促進劑及抑制劑之配製 58 3-2-3 熱硬化潛伏性環氧樹脂配方之配製 59 3-3 氣相成長奈米碳纖維之改質 60 3-3-1 氣相成長奈米碳纖維改質接枝羧酸基 60 3-3-2 氣相成長奈米碳纖維改質接枝胺基 61 3-3-3 以Friedel-Crafts acylation 改質氣相成長奈米碳纖維 63 3-4 氣相成長奈米碳纖維/環氧樹脂複合材之配製 64 3-4-1 氣相成長奈米碳纖維/環氧樹脂配方主劑之配製 64 3-4-2 硬化劑、硬化促進劑及抑制劑之配製 66 3-4-3 氣相成長奈米碳纖維/熱硬化潛伏性環氧樹脂配方之配製 67 3-5 試片製備 67 3-5-1 機械性質-拉伸試驗 67 3-5-2 導電性 69 3-6 儀器分析原理與方法 71 3-6-1 傅立葉紅外線光譜儀分析(FT-IR) 71 3-6-2 儲藏期限(Pot life )測定 71 3-6-3 熱差掃瞄分析(DSC) 72 3-6-4 熱重損失分析(TGA) 72 3-6-5 機械性質分析 73 3-6-6 高解析場發射掃描式電子顯微鏡(HR FE-SEM) 73 3-6-7 化學分析電子光譜儀(ESCA) 74 3-6-8 導電性量測 74 第4章 結果與討論 77 4-1 熱硬化潛伏性環氧樹脂配方 77 4-1-1 熱硬化溫度&儲藏期限 78 4-1-2 恆溫硬化動力學 88 4-1-3 熱性質之分析 97 4-1-3-1 熱重損失分析(TGA) 97 4-1-3-2 DSC 之分析 98 4-1-3-3 動態熱機械分析(DTMA) 99 4-1-4 實驗室配方3(D)之量產 102 4-2 氣相成長奈米碳纖維/環氧樹脂複合材料 107 4-2-1 氣相成長碳纖維之改質 107 4-2-1-1 高解析場發射掃描式電子顯微鏡(HR FE-SEM) 107 4-2-1-2 傅立葉紅外線光譜儀分析(FT-IR) 108 4-2-1-3 化學分析電子光譜儀(ESCA) 110 4-2-2 氣相成長奈米碳纖維與環氧樹脂中分散度之探討 113 4-2-3 奈米碳纖維與環氧樹脂其介面之探討 119 4-2-4 導電性 128 4-2-5 機械性質 132 第5章 結論 138 參考文獻 141

    [1] 張孝全, 李素萍, 段先緯, "碳纖維發展趨勢與應用(上)," 工業材料雜誌, vol. 313, pp. 75-82, 2013.
    [2] 張孝全, 李素萍, 段先緯, "碳纖維發展趨勢與應用(下)," 工業材料雜誌, vol. 314, pp. 147-152, 2013.
    [3] S. A. Gordeyev, J. A. Ferreira, C. A. Bernardo, and I. M. Ward, "A promising conductive material: highly oriented polypropylene filled with short vapour-grown carbon fibres," Materials Letters, vol. 51, pp. 32-36, 2001.
    [4] H. Ma, J. Zeng, M. L. Realff, S. Kumar, and D. A. Schiraldi, "Processing, structure, and properties of fibers from polyester/carbon nanofiber composites," Composites Science and Technology, vol. 63, pp. 1617-1628, 2003.
    [5] J. Xu, J. P. Donohoe, and C. U. Pittman Jr, "Preparation, electrical and mechanical properties of vapor grown carbon fiber (VGCF)/vinyl ester composites," Composites Part A: Applied Science and Manufacturing, vol. 35, pp. 693-701, 2004.
    [6] A. Chatterjee, K. Alam, and P. Klein, "Electrically Conductive Carbon Nanofiber Composites with High-Density Polyethylene and Glass Fibers," Materials and Manufacturing Processes, vol. 22, pp. 62-65, 2007.
    [7] C. A. Cooper, D. Ravich, D. Lips, J. Mayer, and H. D. Wagner, "Distribution and alignment of carbon nanotubes and nanofibrils in a polymer matrix," Composites Science and Technology, vol. 62, pp. 1105-1112, 2002.
    [8] Sadeghian R, M. B, G. S, and H. K-T, "Mode-1 Delamination Characterization for Carbon Nanofiber Toughened Polyester/Glassfiber Composites," in 50th International SAMPE Symposium Proceedings, Long Beach, 2005.
    [9] G. DG, T. GG, M. MJ, W. KR, and L. ML, "Surface treatment of carbon nanofibers for improved composite mechanical properties," in Proceedings of the 49th international society for SAMPE symposium and exhibition, Long Beach, USA, 2004.
    [10] Glasgow, D. Gerald, Lake, and L. Max, "Production of high surface energy, high surface area vapor grown carbon fiber," US Patent 6506355, 2003/01/14, 2003.
    [11] I. C. Finegan, G. G. Tibbetts, D. G. Glasgow, J. M. Ting, and M. L. Lake, "Surface treatments for improving the mechanical properties of carbon nanofiber/thermoplastic composites," Journal of Materials Science, vol. 38, pp. 3485-3490, 2003.
    [12] P. V. Lakshminarayanan, H. Toghiani, and C. U. Pittman Jr, "Nitric acid oxidation of vapor grown carbon nanofibers," Carbon, vol. 42, pp. 2433-2442, 2004.
    [13] K. Lozano and E. Barrera, "Nanofiber‐reinforced thermoplastic composites. I. thermoanalytical and mechanical analyses," Journal of Applied Polymer Science, vol. 79, pp. 125-133, 2001.
    [14] I. Takashi, I. Yutaka, I. Shin, and H. Shunji, "Carbon nanofiber-dispersed resin fiber-reinforced composite material," US Patent 20040067364, 2004/04/08.
    [15] Y. Yonglai, C. G. Mool, L. D. Kenneth, and W. L. Roland, "The fabrication and electrical properties of carbon nanofibre–polystyrene composites," Nanotechnology, vol. 15, p. 1545, 2004.
    [16] G. Tibbetts, M. Lake, K. Strong, and B. Rice, "A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites," Composites Science and Technology, vol. 67, pp. 1709-1718, 2007.
    [17] M. H. Al-Saleh and U. Sundararaj, "A review of vapor grown carbon nanofiber/polymer conductive composites," Carbon, vol. 47, pp. 2-22, 2009.
    [18] A. Apicella and K. Dušek, Epoxy Resins and Composites: III: Springer, 1986.
    [19] K. Dušek and J. P. Bell, Epoxy Resins and Composites II: Springer-Verlag, 1986.
    [20] H. Lee and K. Neville, Handbook of epoxy resins: McGraw-Hill, 1967.
    [21] 垣內弘, 環氧樹脂應用實務, 2 ed. 台灣省台南市: 沈岳林, 2000.
    [22] L. S.Penn and T.T.Chiao, "Epoxy resins," in Handbook of composites G. Lubin, Ed., ed New York : Van Nostrand Reinhold, 1982, pp. 57-88.
    [23] J. B. Enns and J. K. Gillham, "Time–temperature–transformation (TTT) cure diagram: Modeling the cure behavior of thermosets," Journal of Applied Polymer Science, vol. 28, pp. 2567-2591, 1983.
    [24] J. K. Gillham, Developments in Polymer Characterization vol. 3. London: Applied Science, 1983.
    [25] W. W. Wright, "Epoxy resins and composites II (Advances in polymer science, Volume 75). Edited by K. Dusek, Springer-Verlag, Berlin, Heidelberg, 1986. pp. xiii+l80, price DM 118.00. ISBN 3-540-15825-1," British Polymer Journal, vol. 18, pp. 349-349, 1986.
    [26] L. Shechter, J. Wynstra, and R. P. Kurkjy, "Glycidyl Ether Reactions with Amines," Industrial & Engineering Chemistry, vol. 48, pp. 94-97, 1956.
    [27] T. Bailey, B. J. Choi, M. Colburn, M. Meissl, S. Shaya, J. G. Ekerdt, et al., "Step and flash imprint lithography: Template surface treatment and defect analysis," Journal of Vacuum Science & Technology B, vol. 18, pp. 3572-3577, 2000.
    [28] B. Vratzov, A. Fuchs, M. Lemme, W. Henschel, and H. Kurz, "Large scale ultraviolet-based nanoimprint lithography," Journal of Vacuum Science & Technology B, vol. 21, pp. 2760-2764, 2003.
    [29] 藍立文,焦劍, "潛伏性環氧固化劑的發展," 粘接, vol. 18, pp. 15-19, 1997.
    [30] 周文英, 齊暑華, 趙紅振, 劉乃亮, 張溟濤, "環氧複合材料低溫固化劑研究進展," 中國膠粘劑, vol. 16, pp. 49-52;57, 2007.
    [31] 陳連喜, 張惠玲, 雷家珩, "環氧樹脂潛伏性固化劑研究進展," 化工新型材料, vol. 32, pp. 29-32, 2004.
    [32] 孫同云, "試談單組分環氧樹脂加熱致活的潛伏性固化劑," 硅谷, p. 123, 2010.
    [33] 徐武, 王煊軍, 劉祥萱, "潛伏性環氧固化劑研究進展," 粘接, vol. 27, pp. 26-28,52, 2006.
    [34] J. J. Harris and S. C. Temin, "Proposed mechanism for the curing of epoxy resins with amine-lewis acid complexes or salts," Journal of Applied Polymer Science, vol. 10, pp. 523-534, 1966.
    [35] M. Ghaemy and M. H. Khandani, "Study of Polymerization Mechanism and Kinetics of DGEBA with BF3-amine Complexes Using FT-IR and Dynamic DSC," Iranian Polymer Journal vol. 6, pp. 5-17, 1997.
    [36] S. Yangyang and C. P. Wong, "Room temperature stable underfill with novel latent catalyst for wafer level flip-chip packaging applications," in Electronic Components and Technology Conference, 2006. Proceedings. 56th, 2006, pp. 1905-1910.
    [37] L. Xuechun, L. Qinghua, and Z. Jianhua, "Effects of curing agents on the conductivity of isotropical conductive adhesives (ICAs)," in Electronic Materials and Packaging, 2006. EMAP 2006. International Conference on, Kowloon, 2006, pp. 1-6.
    [38] T. Güthner and B. Hammer, "Curing of epoxy resins with dicyandiamide and urones," Journal of applied polymer science, vol. 50, pp. 1453-1459, 1993.
    [39] X. D. Liu, M. Kimura, A. Sudo, and T. Endo, "Accelerating effects of N-aryl-N′,N′-dialkyl ureas on epoxy-dicyandiamide curing system," Journal of Polymer Science Part A: Polymer Chemistry, vol. 48, pp. 5298-5305, 2010.
    [40] H. Brockmann, M. Haufe, and J. O. Schulenburg, "Mechanism of the curing reaction of model epoxy compounds with monuron," International Journal of Adhesion and Adhesives, vol. 20, pp. 333-340, 2000.
    [41] N. Poisson, A. Maazouz, H. Sautereau, M. Taha, and X. Gambert, "Curing of dicyandiamide epoxy resins accelerated with substituted ureas," Journal of Applied Polymer Science, vol. 69, pp. 2487-2497, 1998.
    [42] T. Guthner and B. Hammer, "Curing of epoxy resins with dicyandiamide and urones," Journal of Applied Polymer Science, vol. 50, pp. 1453-1459, Nov 1993.
    [43] P. N. Son and C. D. Weber, "Some aspects of monuron-accelerated dicyandiamide cure of epoxy resins," Journal of Applied Polymer Science, vol. 17, pp. 1305-1313, 1973.
    [44] J. W. Holubka and K. R. Carduner, "NMR Study of the Epoxy Crosslinking Reactions of N,N-Dimethyl-4-Chlorophenyl Urea," Journal of Adhesion, vol. 37, pp. 239-250, 1992.
    [45] Y. Iwakura and S. Izawa, "Glycidyl Ether Reactions with Urethanes and Ureas. A New Synthetic Method for 2-Oxazolidones," Journal of Organic Chemistry, vol. 29, pp. 379-382, 1964.
    [46] 邢素麗, 王遵, 曾竟成, 肖加余, 楊孚標, 邱求元, "新型潛伏性環氧樹脂體系固化動力學," 國防科技大學學報, vol. 28, pp. 31-34, 2006.
    [47] M. Hayaty, M. H. Beheshty, and M. Esfandeh, "Isothermal differential scanning calorimetry study of a glass/epoxy prepreg," Polymers for Advanced Technologies, vol. 22, pp. 1001-1006, 2011.
    [48] M. Treacy, T. Ebbesen, and J. Gibson, "Exceptionally high Young's modulus observed for individual carbon nanotubes," Nature, vol. 381, pp. 678-680, 1996.
    [49] P. Poncharal, Z. L. Wang, D. Ugarte, and W. A. de Heer, "Electrostatic Deflections and Electromechanical Resonances of Carbon Nanotubes," Science, vol. 283, pp. 1513-1516, 1999.
    [50] M.-F. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, "Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties," Physical Review Letters, vol. 84, pp. 5552-5555, 2000.
    [51] C. Bower, R. Rosen, L. Jin, J. Han, and O. Zhou, "Deformation of carbon nanotubes in nanotube-polymer composites," Applied Physics Letters, vol. 74, pp. 3317-3319, 1999.
    [52] A. K.-T. Lau and D. Hui, "The revolutionary creation of new advanced materials—carbon nanotube composites," Composites Part B: Engineering, vol. 33, pp. 263-277, 2002.
    [53] B. Vigolo, A. Pénicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, et al., "Macroscopic Fibers and Ribbons of Oriented Carbon Nanotubes," Science, vol. 290, pp. 1331-1334, 2000.
    [54] J. Hone, "Phonons and thermal properties of carbon nanotubes," in Carbon Nanotubes, ed: Springer, 2001, pp. 273-286.
    [55] P. M. Ajayan, O. Stephan, C. Colliex, and D. Trauth, "Aligned Carbon Nanotube Arrays Formed by Cutting a Polymer Resin—Nanotube Composite," Science, vol. 265, pp. 1212-1214, August 26, 1994 1994.
    [56] R. Saito, M. Fujita, G. Dresselhaus, and M. Dresselhaus, "Electronic structure of chiral graphene tubules," Applied Physics Letters, vol. 60, p. 2204, 1992.
    [57] J. W. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, "Electronic structure of atomically resolved carbon nanotubes," Nature, vol. 391, pp. 59-62, 1998.
    [58] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, et al., "Crystalline ropes of metallic carbon nanotubes," Science, vol. 273, pp. 483-487, 1996.
    [59] R. C. Houtz, ""Orlon" Acrylic Fiber: Chemistry and Properties," Textile Research Journal, vol. 20, pp. 786-801, November 1, 1950 1950.
    [60] K.-T. Lu, "Synthesis of carbon nano-materials using catalytic chemical vapor deposition process in fluidized bed," Master, Materials Science and Engineering, National Cheng Kung University, 2004.
    [61] M. Endo, Y. A. Kim, T. Hayashi, K. Nishimura, T. Matusita, K. Miyashita, et al., "Vapor-grown carbon fibers (VGCFs): Basic properties and their battery applications," Carbon, vol. 39, pp. 1287-1297, 2001.
    [62] O. Breuer and U. Sundararaj, "Big returns from small fibers: A review of polymer/carbon nanotube composites," Polymer Composites, vol. 25, pp. 630-645, 2004.
    [63] I. C. Finegan and G. G. Tibbetts, "Electrical conductivity of vapor-grown carbon fiber/thermoplastic composites," Journal of Materials Research, vol. 16, pp. 1668-1674, 2001.
    [64] M. A. Raza, A. Westwood, and C. Stirling, "Effect of processing technique on the transport and mechanical properties of vapour grown carbon nanofibre/rubbery epoxy composites for electronic packaging applications," Carbon, vol. 50, pp. 84-97, 2012.
    [65] Y.-K. Choi, K.-i. Sugimoto, S.-M. Song, Y. Gotoh, Y. Ohkoshi, and M. Endo, "Mechanical and physical properties of epoxy composites reinforced by vapor grown carbon nanofibers," Carbon, vol. 43, pp. 2199-2208, 2005.
    [66] Fujino, Mutsuko, Noda, Shunsaku, Oosedo, Hiroki, et al., "Prepeg and carbon fiber reinforced composite materials," US Patent 6399199, 2002/06/04.
    [67] S.-N. Ahn, H.-J. Lee, B.-J. Kim, L.-S. Tan, and J.-B. Baek, "Epoxy/amine-functionalized short-length vapor-grown carbon nanofiber composites," Journal of Polymer Science Part A: Polymer Chemistry, vol. 46, pp. 7473-7482, 2008.
    [68] Bertram, L. James, Walker, L. Louis, Hotz, and Z. Charlie, "Latent catalysts, epoxy compositions incorporating same, and coating, impregnating and bonding methods employing the compositions," US Patent 5169473, 1992/12/08.
    [69] J. L. Bertram, C. Z. Hotz, L. L. Walker, and J. Gan, "Latent catalysts, cure-inhibited epoxy resin compositions and laminates prepared therefrom," EP Patent 0458502, 2003/06/18.
    [70] C.-H. Tseng, "Preparation of Conductive Carbon Nanotube Nanocomposites by Using Plasma Modification Technique," Doctor, Chemical Engineering, National Cheng Kung University, 2009.
    [71] C. S. Wang and C. H. Lin, "Properties and curing kinetic of diglycidyl ether of bisphenol A cured with a phosphorus-containing diamine," Journal of Applied Polymer Science, vol. 74, pp. 1635-1645, 1999.
    [72] Y. Zhou, F. Pervin, and S. Jeelani, "Effect vapor grown carbon nanofiber on thermal and mechanical properties of epoxy," Journal of Materials Science, vol. 42, pp. 7544-7553, 2007.
    [73] 蘇裕昌, "離型紙 " 漿紙技術, vol. 12, pp. 1-16, 2008.
    [74] L. Guadagno, B. De Vivo, A. Di Bartolomeo, P. Lamberti, A. Sorrentino, V. Tucci, et al., "Effect of functionalization on the thermo-mechanical and electrical behavior of multi-wall carbon nanotube/epoxy composites," Carbon, vol. 49, pp. 1919-1930, 2011.

    無法下載圖示 校內:2018-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE