| 研究生: |
田湘薇 Tien, Shiang-Wei |
|---|---|
| 論文名稱: |
臺南都會區車輛使用酒精汽油排放有害空氣污染物之影響研究 Study of Organic Air Toxics for Vehicles Emission by using Ethanol-Blend Gasoline in Tainan Urban Area |
| 指導教授: |
蔡俊鴻
Tsai, Jiun-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 352 |
| 中文關鍵詞: | 都會區移動源 、酒精汽油 、有害空氣污染物 、空氣品質模式 、健康風險評估 |
| 外文關鍵詞: | Mobile Sources in Urban Areas, Ethanol-gasoline Blends, Organic Air Toxic, Air Quality Model, Health Risk Assessment |
| 相關次數: | 點閱:156 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以MOBILE 6.2及AERMOD模式為工具探討都會區汽油車使用酒精汽油所致有機性有害空氣污染物排放及對空氣品質所致影響。討論油品包括市售95無鉛汽油、酒精含量3 vol% (E3) 及15 vol% (E15)之汽油,目標污染物包括苯、MTBE、1,3-丁二烯、甲醛、乙醛及丙烯醛等六種有害空氣污染物,並以臺南都會區為研究區域。此外,車輛使用不同油品排放有害空氣污染物所致民眾健康危害影響亦一併評估。
以MOBILE 6.2推估不同油品所致機車有害空氣污染物排放係數之結果顯示,除乙醛及苯外,推估所得甲醛及丙烯醛排放係數皆較實測值為高,甲醛之差異性為最大,推估排放係數高估約7.9~8.9倍,乙醛則略微低估(約0.9倍)。不論推估值或實測值皆顯示,與市售油相較使用酒精汽油可降低苯、MTBE、1,3-丁二烯及丙烯醛排放,但會增加甲醛及乙醛排放。油品組成變動對MOBILE 6.2排放量推估之敏感度分析結果顯示,油品中乙醇、芳香烴及烯烴含量對汽油車有害空氣污染排放係數具有影響,不同車種之影響程度不同。
臺南都會區各車種所致六種有害空氣污染物總排放量推估結果顯示四行程機車 = 自用小客車 > 二行程機車 > 汽油小貨車 > 營業小客車。以網格排放量分佈來看,汽油車高排放區為人口密度最大之東區,以機車貢獻量為高;小型車排放高值則集中在國道1號。使用不同油品之排放量推估結果顯示,與市售油相較使用E3或E15酒精汽油可分別降低總有害空氣污染物排放量達21%及46%,乙醇添加比例愈高所致污染物排放量愈低。
應用AERMOD進行臺南都會區汽油車使用不同油品所致有害空氣污染物濃度模擬結果顯示,六種有害空氣污染物最大小時值之高濃度均落在主要道路(國道、省/縣道)下風1 km地區,其值為平均濃度之2倍;模擬使用E3酒精汽油所得有害空氣污染物最大小時濃度值較使用市售油所得濃度值降低約20%,使用E15酒精汽油則降低約67%。模擬所得年均濃度高值則集中於東區,其值約為臺南都會區平均值2倍;使用E3酒精汽油所得有害空氣污染物年均濃度值較使用市售油所得濃度值降低約19%,使用E15酒精汽油則降低約47%。AERMOD參數敏感性分析結果顯示,物種半衰期為最敏感因子,其次為體源排放高度及地形;當模擬半衰期低於一天之物種時,是否有設定物種半衰期對著地濃度空間分佈及其整體平均濃度具有影響。
以吸入途徑為主評估汽油車使用三種油品排放有害空氣污染物所民眾健康危害影響之結果顯示,市售油所致個人終身總致癌風險最高(1.66×10-4),使用E15做為車用油品時,所致個人終身總致癌風險約降低1.7倍,主要貢獻物種為1,3-丁二烯。市售油所致慢性吸入危害指數(HIChronic)亦為最高(0.017),主要貢獻物種為丙烯醛;急性暴露則以E15所致急性吸入危害指數(HIAcute)為最高(0.019),主要貢獻物種為丙烯醛;惟危害指數(HI)皆低於管制目標值(1.0)。
整體而言,研究結果顯示使用酒精汽油作為汽油車燃料,可降低臺南都會區總有害空氣污染物排放濃度,對改善空氣品質具有助益,並可降低有害空氣污染造成之個人終生致癌風險及慢性吸入危害。
This study investigated the effect of ethanol-gasoline blends on organic air toxics emissions from on-road gasoline mobile sources and its influence on air quality by using MOBILE 6.2 model and AERMOD model, respectively. Three fuels were conducted as simulation scenarios, including one commercial gasoline (G95) and two ethanol-gasoline blends (E3 and E15). Tainan urban area was chosen as simulation area. Six major air toxics, including benzene, MTBE, 1,3-butadiene, formaldehyde, acetaldehyde, and acrolein, were selected as target air toxics. Health risk assessment of selected air toxics is also evaluate.
The results showed that the estimated emission factors of target pollutant from MOBILE 6.2 are 1.1 to 8.9 folds those from field sampling data, except acetaldehyde and benzene. Formaldehyde represents the largest difference (7.9-8.9 times), following by acrolein (1.2-2.1 times). Using ethanol-gasoline blends as fuel showed that the emission reductions of benzene, MTBE, 1,3-butadiene, and acrolein emissions compared to those from G95, but increased carbonyl emissions. The results of sensitivity test showed that the ethanol, aromatics, and alkenes in fuel may result in different toxics emissions factor.
The highest total air toxics emissions were contributed by four-stroke motorcycles and passenger cars in Tainan urban area, followed by two-stroke motorcycles, light-duty gasoline trucks, and taxis. The grid emissions (1 km × 1 km) showed that the highest toxics emissions area is located on Tainan East District; emissions from motorcycles are dominated source. Motorcycles account around 39-44% emission among all on-road gasoline vehicles. Total air toxics emissions showed a reduction by 21% and 46% for E3 and E15, respectively, compared with those of commercial gasoline.
Ground concentrations of selected air toxics that simulated from AERMOD show that the high value of maximum hourly concentrations is located on the downwind area of highway or provincial road within the range of 1 km. The highest concentration is 2 times higher than the average concentration of this simulation area. Moreover, the maximum hourly concentrations of air toxics showed a reduction by 20% and 67% for E3 and E15, respectively, compared with those of G95. For annual average concentrations, the high value is located on the East District. The annual average concentrations of air toxics showed a reduction by 19% (E3) and 47% (E15) as compared with those of G95. The most sensitive factor among AERMOD parameters is half-life of species; it will affect the spatial distribution and average concentration of air toxics.
The total maximum individual cancer risk (MICR) for target air toxics are 1.66×10-4, 1.20×10-4, and 9.94×10-5 for G95, E3, and E15, respectively, and the high emission and low cancer unit risk of 1,3-butadiene were responsible for this. The rankings for acute effects were the same as those for the carcinogenic effects as G95 (0.017) had the highest rankings, following by E3 (0.016) and E15 (0.012). The low chronic-effect values of acrolein may be responsible for the high acute effects of G95. The average total acute hazard index is 0.018 (G95), 0.019 (E3), and 0.019 (E15). The low acute-effect values of acrolein are responsible for this.
In brief, ethanol-gasoline blends applied in on-road gasoline vehicles in Tainan urban area showed that the ground concentration reductions of total organic air toxics compared to those from G95. In addition, the MICR and chronic damage caused by target air pollution are also reduced while using ethanol-gasoline blends as fuel.
英文文獻
1. USEPA, MOVES2010 Fuel Adjustment and Air Toxic Emission Calculation Algorithm – Development and Results. EPA-420-R-11-009, Office of Transportation and Air Quality, 2011.
2. USEPA, Emission and Air Quality Modeling Tools for Near-Roadway Applications, EPA/600/R-09/001, 2008.
3. USEPA, Guidance on the Use of Models and Other Analyses for Demonstrating Attainment of Air Quality Goals for Ozone, PM2.5, and Regional Haze. Office of Air Quality Planning and Standards, EPA -454/B-07-002, 2007.
4. USEPA, Control of Hazardous Air Pollutants from Mobile Sources. EPA-HQ-OAR-2005-0036, 2005.
5. USEPA, National Emission Standards for Hazardous Air Pollutants for Plywood and Composite Wood Products Manufacture: Final Rule. 2004.
6. USEPA, User's Guide For The AERMOD Meteorological Preprocessor (AERMET). EPA-454/B-03-002, 2004.
7. USEPA, AERMOD:Latest Features and Evaluation Results. Office of Air Quality Planning and Standards, EPA-454/R-03-003, 2003.
8. USEPA, Comparison of Regulatory Design Concentrations: AERMOD vs ISCST3, CTDMPLUS, ISC-PRIME. EPA-454/R-03-002, 2003.
9. USEPA, User’s Guide to MOBILE6.1 and MOBILE6.2. Air and Radiation, EPA420-R-03-010., 2003.
10. USEPA, MOBILE6.2 Air Toxic Emission Factor Modeling: A Trend and Sensitivity Analysis. 2002.
11. USEPA, 1999-2002 NEIHAPsTrends: Success of CAA Air Toxic Programs in Reducing HAP Emissions and Risk. OAQPS, 2002.
12. USEPA, Risk Assessment Guidance for Superfund. Office of Emergency and Remedial Response, Volume I, Human Health Evaluation Manual (Part A), Interim Final. EPA/540/1-89/002. Washington, 1989.
13. USEPA, Interim quantitative cancer unit risk estimates due to inhalation of benzene. Washington, DC., 1985.
14. USEPA, Web Resource c, Motor Vehicle-Related Air Toxics Study. Office of Mobile Sources, Ann Arbor, MI. http://www.epa.gov/otaq/regs/toxics/tox_archive.htm, 1993.
15. CalEPA, An Overview of Methods for EPA’s Nationa-Scale Air Toxics Assessment. Office of Air Quality, Planning, and, Standards Research Triangle Park, 2011.
16. CalEPA, The Air Toxics Hot Spots Program Guidance Manual for Preparation of Health Risk Assessments. OEHHA, 2003.
17. OECD, Control of Hazardous Air Pollutants in OECD Countries. OECD Publications Service, Paris, 1995.
18. SCAQMD, Health Risk Assessment Guidance for Analyzing Cancer Risks from Mobile Source Diesel Idling Emissions for CEQA Air Quality Analysis. Diamond Bar, 2003.
19. SCAQMD, Risk Assessment Procedures for Rules 1401 and 212. 2005.
20. American Association of State Highway and Transportation Officials (AASHTO), Analyzing, Documentincg, and Communicating The Impacts of Mobile Source Air Toxic Emissions in the NEPA Process. 2007.
21. Brauer, M., Hoek, G., Van Vliet, P., Meliefste, K., Fishcer, P.H., Wijga, A., Koopman, L.P., Neijens, H.J., Gerritsen, J., Kerkhof M., Heinrich J., Bellander, T., Brunekreef, B., Air Pollution from Traffic and the Development of Respiratory Infections and Asthmatic and Allergic Symptoms in Children, Am. J. Respir. Crit. Care Med., Vol. 166 (8), 2002.
22. S. Cheng, D. Chen, J. Li, H. Wang, X. Guo, The assessment of emission-source contributions to air quality by using a coupled MM5-ARPS-CMAQ modelling system: a case study in the Beijing metropolitan region, China Environmental Modelling & Software, Vol. 22 , 1601–1616, 2007.
23. O. Ozden, T. Dogeroglu, S. Kara, Assessment of ambient air quality in Eskisehir, Turkey Environment International, Vol. 34, 678–687, 2008.
24. S.S. Jenson, R. Berkowicz, H.S. Hansen, O. Hertel, A Danish decision-support GIS tool for management of urban air quality and human exposures Transportation Research Part D, Vol. 6, 229–241, 2001.
25. Chan C.C., Nien C.K., Tasi C.Y., Her G.R., Comparison of tail pipe emissions from motorcycle and passenger cars. Journal of Air & Waste Management Association, Vol. 45 (2), 116-124, 1995.
26. Harrison, R., Leung, P., Somervaille, L., Smith, R., Gilman, E., 1999. Analysis of incidence of childhood cancer in the West Midlands of the United Kingdom in relation to proximity to main roads and petrol stations. Occupational & Environmental Medicine 56(11), 774-780.
27. Health Canada. Priority Substances List Assessment Report. Formaldehyde. Environment Canada, Health Canada, 2001.
28. Ishii T, Y Fukushima, N Ohte, Energy budget on snowmelt at forested area in the both warm and cold temperature regions. Vol. 64, 61-74, 1992.
29. Jia L.W., Zhou W.L., Shen M.Q., Wang J., Lin, M.Q., The investigation of emission characteristics and carbon deposition over motorcycle monolith catalytic converter using different fuels. Atmospheric Environment, China, Vol. 40 (11), 2002-2010, 2006.
30. J.H. Seinfeld, S.N. Pandis, Atmospheric Chemistry and Physics from Air Pollution to Climate Change Wiley, New York (1998) 1326 pp.
31. K.H. Lau, Z. Yuan, J.Z. Yu, K.K. Louie, Source apportionment of ambient volatile organic compounds in Hong Kong. Science of the Total Environment, Vol. 408, 4132-4149, 2010.
32. Kwangsam N, Yong P. K., Chemical mass balance receptor model applied to ambient C2–C9 VOC oncentration in Seoul, Korea: Effect of chemical reaction losses. Atmospheric Environment, Vol. 41, 6715-6728, 2007.
33. M. Clairotte, T.W. Adam, A.A. Zardini, U. Manfredi, G. Martini, A. Krasenbrink, A. Vicet, E. Tournié, C. Astorga, Effects of low temperature on the cold start gaseous emissions from light duty vehicles fuelled by ethanol-blended gasoline. Applied Energy, Italy, France, Vol. 102, 44-54, 2013.
34. North Carolina, Office of Air Quality, Planning, and Standards Research Triangle Park, An Overview of Methods for EPA’s National-Scale Air Toxics Assessment, 2011.
35. OEHHA, Air Toxics Hot Spots Program Risk Assessment Guidelines: Technical Support Document for Exposure Assessment and Stochastic Analysis. 2012.
36. Perry R., and Gee, I.L., Vehicle emissions in relation to fuel composition. Science of The Total Environment, Vol. 169 (1-3), 149-156, 1995.
37. R. Macdonald, Ph.D., P.Eng., Theory and Objectives of Air Dispersion Modelling. Department of Mechanical Engineering University, Waterloo, 2003.
38. USEPA, PPT. Development of a 1999 National Air Toxics Inventory for Highway Mobile Sources Using MOBILE6.2. Office of Transportation and Air Quality/Office of Air Quality Planning and Standards.
39. USEPA, Web Resource a, http://www.epa.gov/ttn/atw/nata1999.
40. USEPA, Web Resource b, Integrated Risk Information System File for Benzene. http://www.epa.gov/iris/subst/0276.htm, 2000.
41. USEPA, Web Resource c, Emission Inventories, http://www.epa.gov/ttn/chief/eiinformation.html.
中文文獻
1. 行政院環境保護署,林清和、盧昭彰、洪培元,南高屏地區空氣污染總量管制規劃-子計畫A1 南高屏地區移動源排放量整合與推估。EPA-88-FA21-03-0012,民國88年。
2. 行政院環境保護署,「執行汽油引擎汽車新車型審驗、新車抽驗及使用中車輛召回改正調查測試暨相關管制制度之研究」專案工作計畫。EPA-97-FA13-03-D070,民國98年。
3. 行政院環境保護署,執行機車新車型審驗、新車抽驗及使用中機車召回改正調查測試。EPA-97-FA13-03-D069,民國98年。
4. 蔡俊鴻、溫麗琪,環保署/國科會空汙防制科技合作研究計畫,「都會區有害性空氣污染物之管制策略及效益評估---總計劃暨子計劃:工業都會區有機性有害空氣污染物影響暨管制有效性評估研究」。國立成功大學環境工程學系/中華經濟研究院,NSC 92-EPA-Z006-002,民國93年。
5. 行政院環境保護署,空氣品質模式技術及對策支援計畫(二)。EPA-99-FA11-03-A079,民國100年。
6. 丁娜、陳亞林、王清芬,AERMOD模型在區域環境空氣質量預測中的應用研究。山東科學,第24卷,第4期,民國100年。
7. 林欣慧,應用 MOBILE6.2 推估臺灣地區移動污染源排放量之研究。國立臺北大學資源管理研究所,碩士論文,民國93年。
8. 林志柏,應用AERMOD 模式於臺灣之複雜地形之探討。國立臺灣大學環境工程學研究所,碩士論文,民國98年。
9. 梁麗娟、郭彥、王海芳,利用AERMOD模型分析高斯模式下面源參數對大氣環境影響評價預測的影響規律。科技資訊,第36卷,民國99年。
10. 林書任,大眾運輸導向發展策略對城市區域土地使用型態之影響-以新臺南市為例。國立成功大學都市計畫研究所,碩士論文,民國100年。
11. 劉輝、史學峰、李麗珍,AERMOD模型系統中點源參數敏感性影響規律分析。能源與節能,民國101年。
12. 廖士勛,臺南都會區機車行車型態與氣態污染物排放特性研究。國立成功大學環境工程學系,碩士論文,民國101年。
13. 曠永銓,許珮蒨,AERMOD在臺灣地區之應用研究。中興工程,第88期,民國94年。
14. 柯雅琍,四行程噴射引擎欣機車使用酒精汽油於四種行車型態之氣態污染物排放特徵研究。國立成功大學環境工程學系,碩士論文,民國101年。
15. 黃欣怡,臺灣地區機車排放空氣污染量推估方法暨關聯參數影響程度研究。國立成功大學環境工程學系,碩士論文,民國101年。
16. 江磊、黃國忠、吳文軍、丁峰、楊多興、李時蓓,美國AERMOD模型與中國大氣導則推薦模型點源比較。環境科學研究,第20卷,第3期,民國96年。
17. 周欣慧,酒精汽油對不同里程車輛引擎排放氣態污染物影響研究。國立成功大學環境工程學系,碩士論文,民國97年。
18. 張開駿,汽油含氧量及芳香烴含量對四行程機車排放氣態污染物之影響。國立成功大學環境工程學系,碩士論文,民國99年。
19. 張有賢、符辛竹、王小燕,經度、緯度及時差設置對AERMOD預測結果的影響。環境科學學報,第32卷,第5期,民國101年。
20. 葉蕙芬,冷熱啟動測試機車排放揮發性有機物特徵之差異性研究。國立成功大學環境工程學系,碩士論文,民國93年。
21. 姚永真,汽油成份於四行程機車引擎氣態污染物排放特徵及模式研究。國立成功大學環境工程學系,博士論文,民國93年。
22. 王薏婷,噴射引擎機車使用酒精汽油為燃料之氣態污染物排放特徵研究。國立成功大學環境工程學系,碩士論文,民國100年。
23. 行政院環保署移動污染源管制網,網頁資料,http://mobile.epa.gov.tw/oilimprovement_3.aspx.
24. 行政院環保署,網頁資料,環保專案查詢系統,http://epq.epa.gov.tw/mp.aspx
25. 空氣品質模擬中心,網頁資料,http://aqmc.epa.gov.tw.
26. 行政院研究發展考核委員會,網頁資料,http://glocalgov.nat.gov.tw/NCity/TainanCity/.
27. 社團法人臺南市熱蘭遮失智症協會,網頁資料,http://www.zda.org.tw/.
28. 內政部行政區域圖,網頁資料,http://taiwanarmap.moi.gov.tw.
29. 內政部統計處,網頁資料,http://statis.moi.gov.tw.
30. 臺南市戶籍人口統計資料,網頁資料,http://tnhr.tncg.gov.tw.