簡易檢索 / 詳目顯示

研究生: 杜冠緯
Tu, Kuan-Wei
論文名稱: 翼型擾流板對三維汽車模型的數值模擬
Numerical Simulation of Airfoil Spoilers on a Three-Dimensional Vehicle Model
指導教授: 林三益
Lin, San-Yih
闕志哲
Chueh, Chih-Che
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 61
中文關鍵詞: 擾流板翼端板設計NACA4412數值模擬
外文關鍵詞: Spoiler, Endplate Design, NACA 4412, Numerical Simulation, Vehicle Aerodynamics
相關次數: 點閱:57下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究採用慕尼黑大學所提供之標準車輛幾何模型,針對車輛尾部加裝擾流板前後之氣動性能進行系統性比較與分析。選用具備良好升力特性的 NACA 4412作為擾流板翼型剖面,研究內容涵蓋攻角變化對氣動參數的影響、翼端板厚度對渦流結構的控制效果、不同翼端板幾何設計之效能比較,以及於高速與低速不同來流條件下之升力與阻力表現差異。模擬結果顯示,加裝後擾流板的車輛模型在升阻比方面相較於未加裝時有顯著提升,特別是在高速流場條件下,更能有效降低尾流區的壓差與渦流強度,顯示擾流板在提升氣動效率與穩定性方面的潛力。此外,針對翼端板設計的探討亦顯示,適當設計之翼端板能有效削弱翼尖渦流對升力穩定性的負面影響,並改善尾流結構。然而若翼端板厚度設計不當,過厚可能導致迎風面阻力增大,顯示其幾何特性需謹慎考量。在速度區間的比較方面,研究發現高速條件下,擾流板所帶來的升阻比改善幅度遠高於低速條件,說明擾流板在高速行駛時對於氣流穩定性與尾部壓力分佈的影響更為顯著。綜上所述,本研究結果可作為車輛外型空氣動力優化設計之參考,特別是在高速行駛環境中,透過合理配置擾流板與翼端板,可有效提升車輛之操控穩定性與能源效率。

    This study investigates the aerodynamic performance of rear spoilers and endplates through computational fluid dynamics (CFD) simulations on a three-dimensional vehicle model. The model is based on the standard DrivAer geometry developed by the Technical University of Munich, which has been widely used for aerodynamic research due to its realistic and modular design. A NACA 4412 airfoil, known for its favorable lift characteristics and moderate camber, was selected to design the spoiler.
    The study systematically evaluates how different spoiler angles of attack, endplate thicknesses, and geometric configurations influence aerodynamic efficiency. Simulations are conducted under both low-speed (10–18 m/s) and high-speed (30–40 m/s) flow conditions to understand speed-dependent aerodynamic effects.
    Results show that adding a properly designed rear spoiler improves the lift-to-drag ratio (Cl/Cd), particularly at higher speeds, where it effectively reduces adverse pressure gradients and mitigates flow separation at the rear of the vehicle. The presence of endplates further enhances aerodynamic stability by minimizing the strength of tip vortices and promoting cleaner airflow reattachment. However, excessively thick endplates increase frontal area and drag, which in turn degrades aerodynamic performance.
    High-speed conditions exhibit more pronounced improvements in Cl/Cd than low-speed scenarios due to the relatively lower influence of skin friction and a greater contribution from pressure drag. These findings offer practical guidance for optimizing spoiler and endplate designs to enhance vehicle stability and efficiency, especially in high-speed automotive applications.

    中文摘要 i EXTEND ABSTRACT ii SUMMARY ii INTRODUCTION iii MATERIALS AND METHODS iii RESULTS AND DISCUSSION iv CONCLUTIONS v 致謝 vi 目錄 vii 表次 ix 圖次 x 符號說明 xi 第一章 緒論 1 1.1前言 1 1.2研究動機與目的 1 1.3文獻回顧 2 第二章 空氣動力學理論基礎 5 2.1基礎理論 5 2.2氣動力參數 5 2.2.1驅動力Fthrust 5 2.2.2升力係數CL 5 2.2.3阻力係數CD 6 2.2.4壓力係數Cp 6 2.2.5壓力阻力Dp 7 2.3氣動力重心(Aerodynamic Center) 7 2.4邊界層基本概念 8 2.5 y+理論 9 第三章 數值方法 11 3.1 紊流模型(Turbulence Model) 12 3.1.1 S-A(Spalart-Allmaras)模型 12 3.1.2 SST(Shear Stress Transport )?−ω模型 13 3.2 統御方程式 16 3.2.1連續方程式(Continuity Equation) 16 3.2.2動量方程式(Energy Equation) 16 第四章 模型驗證 19 4.1Fluent對NACA4412翼型之升阻力係數驗證 19 4.2 Fluent對Drivaer model之升阻力係數驗證 19 第五章 結果與討論 21 5.1 NACA 4412後擾流板與無後擾流板比較 21 5.2 NACA 4412不同翼型攻角對車輛模型的影響 21 5.3翼端板厚度對車輛氣動性能影響 22 5.4翼端板設計對車輛氣動性能影響 23 5.5不同速度下對車輛氣動性能影響 23 第六章 結論與建議 25 6.1車型選擇與模擬準確性驗證 26 6.2翼型準確性與可用性驗證 26 6.3攻角對氣動表現之參數分析 26 6.4翼端板厚度之氣動效應探討 26 6.5輪廓優化效果評估 27 6.6速度變化對氣動效能之影響 27 第七章 未來研究方向 28 7.1擾流板幾何參數之多樣化設計 28 7.2翼端板三維形狀優化 28 7.3擾流板與車體間之幾何配置 28 7.4橫風與實際道路條件下之模擬 28 7.5主動氣動控制技術之導入 28 7.6數值與實驗數據比對驗證 29 參考文獻 30

    1.Mustafa Cakir,CFD study on aerodynamic effects of a rear wing/ spoiler on a passenger vehicle, Santa Clara University,2012
    2.A.R. Norwazan, A.J. Khalid, A.K. Zulkiffli, O. Nadia and M.N. Fua,Experimental and Numerical Analysis of Lift and Drag Force of Sedan Car Spoiler, Applied Mechanics and Materials,2012
    3.Devang S. Nath, Prashant Chandra Pujari, Amit Jain and Vikas Rastogi,Drag reduction by application of aerodynamic devices in a race car, Nath et al. Advances in Aerodynamics,2021
    4.SHYAM P. KODALI and SRINIVAS BEZAVADA ,Numerical simulation of air flow over a passenger car and the Influence of rear spoiler using CFD, International Journal of Advanced Transport Phenomena,2012
    5.A. BULJAC, I. DŽIJAN, I. KORADE, S. KRIZMANIĆ and H.KOZMAR*,AUTOMOBILE AERODYNAMICS INFLUENCED BY AIRFOIL-SHAPED REAR WING,International Journal of Automotive Technology, Vol. 17, No. 3, pp. 377−385 (2016)
    6.Ashok Gopalarathnam and Michael S. Seligt ,Design of High-Lift Airfoils for Low Aspect Ratio Wings with Endplates, Department of Aeronautical and Astronautical Engineering University of Illinois at Urbana-Champaign,1997
    7.Jae Hwan Jung,Mi Jeong Kim,Hyun Sik Yoon,Pham Anh Hung,Ho Hwan Chun,Dong Woo Park,Endplate effect on aerodynamic characteristics of threedimensional wings in close free surface proximity, Inter J Nav Archit Oc Engng (2012) 4:477~487
    8.SPALART, Philippe; ALLMARAS, Steven. A one-equation turbulence model for aerodynamic flows. In: 30th aerospace sciences meeting and exhibit. 1992. p. 439.
    9.https://turbmodels.larc.nasa.gov/spalart.html
    10.Wilcox D.Turbulence Modeling for CFD (2nd ed.), DCW Industries, Inc. (1998)
    11.MENTER, Florian R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal, 1994, 32.8: 1598-1605
    12.https://turbmodels.larc.nasa.gov/naca4412sep_val.html
    13.Angelina I. Heft, Thomas Indinger and Nikolaus A. Adams Technische Universität München, Introduction of a New Realistic Generic Car Model for Aerodynamic Investigations, 2012-01-0168
    14.Matthew Aultman1,Lian Duan ,Flow Topology of the Bi‑Stable Wake States for the DrivAer Fastback Model,2024

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE