| 研究生: |
廖俊明 Liao, Jyun-ming |
|---|---|
| 論文名稱: |
應用序率方法推估淡水河流域補注量之研究 Applying the Stochastic Approach to Estimate the Recharge of the Tam-sui-river basin |
| 指導教授: |
徐國錦
Hsu, Kuo-chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 水位變動法 、序率頻譜分析法 、補注 |
| 外文關鍵詞: | recharge, stochastic spectral analysis, water table fluctuation method |
| 相關次數: | 點閱:144 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來全球氣象明顯異常,對水資源之利用造成重大衝擊。台灣2002年的嚴重乾旱事件顯示,除了宣導節水的措施外,必須進一步的規劃抗旱備用水源,以作為乾旱期間救急之用。目前台灣由於降雨事件極端分佈,供雨不穩定。不可完全端賴地表水水源做為唯一水資源供應,需將地下含水層當作地下水庫,與地表水聯合管理運用。為了有效管理地下水資源,不僅要了解含水層之水文特性,更要探討降雨量與補注量之間的相互關係。
本研究使用定率式水位變動法依據觀測水井之水位變化估測求得各年單井週遭之補注量,發現降雨量與補注量隨時間變化可以線性關係表示,再以此線性關係代入序率頻譜分析模式,利用頻譜轉換求得降雨-地下水位間及河川水位之頻譜關係,再代入現地降雨、地下水位及河川水位資料,反推求得降雨與補注之比例及含水層參數,以供地下水管理調配之用。研究結果顯示當模式不考慮河川水位影響時之降雨入滲係數為19.09%,而當模式考慮河川水位影響時為23.37%,其間之差異為地下水位與河川水位之側向補注所引起。本研究之結果顯示結合定率式地下水位變動法與序率頻譜分析模式進行一流域之入滲量估測是可行且經濟的。
Recent meteorological data show that climate change is occurring in Taiwan and causes significant impacts on the water resources utilization. The drought event in 2002 shows that a water resources planning in the drought period for the Tam-sui-river basin is needed. The symptoms of climate change tend to induce the instability of surface water resource and strengthen the importance of the groundwater resources in Taiwan. It becomes obvious that to operate groundwater in conjunction with the surface water is required. The prerequisite to efficiently manage the groundwater resources requires not only the hydrological property of aquifers but also the relation between precipitation and recharge. In this study, the deterministic method of water table fluctuation is used at three shallow aquifer wells to explore the relations between precipitation and recharge. Then the mathematic form is substituted to the stochastic model. The time series data of precipitation, groundwater and river stage are analyzed by using the spectral analysis. The aquifer parameter and the recharge ratio are estimated. The recharge ratio is estimated to be 19.09% and 23.37% when the water level of river is or is not considered, respectively. The result shows that the method which combines the deterministic water table fluctuation method and stochastic spectral model is feasible and economical for practical applications.
[1]Bloomfield, P.(1976), Fourier analysis of time series: An introduction, John Wiley & Sons, Inc.
[2]Bendat, J. S. and Piersol, A. G.(1991), Random data, Analysis and Measurement Procedures, John Wiley & Sons, New York.
[3]Barnes, C. J., Jacobson, G., and Smith, G. D.(1994), The distributed recharge mechanism in the Australian arid zone , Soil Sci. Soc. Am. J., 58, 31-40.
[4]Crosbie, R. S., Binning P., and Kalma J. D.(2005), A time series approach to inferring groundwater recharge using the water table fluctuation method, Water Resour. Res., 41(1), W01008, doi:10.1029/2004WR003077.
[5]Deutsch, C. V., and Journel, A. G.(1992), GSLIB geostatistical software library and user’s guide, Oxford University Press, New York.
[6]Lerner, D. N.(2002), Identifying and quantifying urban recharge: a review, Hydrogeology Journal, 10, 143-152.
[7]Gerhart, J. M.(1986), Groundwater recharge and its effect on nitrate concentrations beneath a manured field site in Pennsylvania, Ground Water, 24, 483-489.
[8]Gelhar, L. W.(1974), Stochastic analysis of phreatic aquifers, Water Resour. Res., 10(3), 539-545.
[9]Gelhar, L. W.(1993), Stochastic subsurface hydrology, Prentice Hall, New Jersery.
[10]Gelhar, L. W., and Wilson, J. L.(1974), Ground-water quality modeling, Ground water, Vol.12, No.6, 399-545
[11]Hall, D. W., and Risser, D. W.(1993), Effects of agricultural nutrient management on nitrogen fate and transport in Lancaster county, Pennsylvania, Water Resour. Bull, 29, 55-76.
[12]Johnson, A. I.(1967), Specific yield –compilation of specific yields for various materials, US Geol Surv Water-Supply Paper, 1662-D, 74 pp.
[13]Kitanidis, P.K.(1997), Introduction to Geostatistics: applications in hydrogeology, Cambridge University Press, New York.
[14]Meinzer, O. E.(1923), The occurrence of groundwater in the United States with a discussion of principles, US Geol Surv Water-Supply Pap, 489, 321 pp.
[15]Meinzer, O. E., and Stearn, N. D.(1929), A study of groundwater in the Pomperaug Basin, Conn. with special reference to intake and discharge, US Geol Surv Water-Supply Pap, 597B, 73-146.
[16]Rasmussen, W. C., and Andreasen, G. E. (1959), Hydrologic budget of the Beaverdam Creek Basin, Maryland, US Geol Surv Water-Supply Pap, 1472, 106 p.
[17]Rennolls, K., Carnell, R., and Tee, V.(1980), A descriptive model of the relationship between rainfall and soil water table, J. Hydrol., 47, 103-114.
[18]Richard, H. N., Donald, R. D., and Soroosh, S.(1989), Analysis of natural groundwater level variations for hydrogeologic conceptualization, Hanford Site, Washington, Water Resour. Res., 25(7), 1519-1529.
[19]Richard, W. H., and Peter, G. C.(2002), Using groundwater levels to estimate recharge, Hydrogeology Journal, vol. 10, 91-109.
[20]Schwartz, F. W., and Zhang, H.(2003), Fundamentals of ground water, John Wiley & Sons, New York.
[21]Shih, D. C. F., and Lin, G. F.(2004), Application of spectral analysis to determine hydraulic diffusivity of a sandy aquifer(Pingtung County, Taiwan), Hydrol. Process. 18, 1655-1669.
[22]Ting, C. S., Kerh, T., Liao, C. J.(1998), Estimation of groundwater recharge using chloride mass balance method, Pingtung Plain, Taiwan, Hydrogeology Journal, vol. 6, 282-292.
[23]Viswanathan, M. N.(1984), Recharge characteristic of an unconfined aquifer from the rainfall water table relationship, J. Hydrol., 70, 233-250.
[24]Van Camp, M., and Vauterin, P.(2004), Tsoft Manual version 2.0.14, Royal Observatory of Belgium.
[25]Van Camp, M., and Vauterin, P.(2005), Tsoft: graphical and interactive software for the analysis of time series and Earth tide, Computers& Geosciences, 31, 631-640.
[26]Weeks, E. P., and Sorey, M. L.(1973), Using of finite-difference arrays of observation wells to estimate evapotranspiration from groundwater in the Arkansas River Valley, Colorado, US Geol Surv Water-Supply Pap, 2029C, 27 pp.
[27]White, W. N.(1932), A method of estimating groundwater supplies based on discharge by plants and evaporation from soil results of investigations in Escalante Valley, Utah, US Geol Surv Water-Supply Pap, 659, 106 pp.
[28]Zhang, Y. K., and Schilling, K.(2004), Temporal scaling of hydraulic head and river base flow and its implication for groundwater recharge, Water Resour. Res., 40, W03504, doi:10.1029/2003WR002094.
[29]吳建民(1967),「台北盆地地盤沉陷問題之研究(上)」,土木水利(4),台北市。
[30]吳偉特(1979),「臺北盆地土壤之工程特性」,土木水利季刊,第五卷,第四期,53-64。
[31]王如意、易任(1982),「應用水文學-下冊」,國立編譯館。
[32]歐晉德、李延恭、鄭在仁(1983),「台北盆地松山層地下水位及水壓分佈對基礎工程影響」,土木水利,第十卷,第三期,89-102。
[33]吳偉特(1987),「地下水引致地盤下陷對工程設施之影響」,地工技術雜誌,第二十期,5-18。
[34]林茂文(1992),「時間數列分析與預測」,華泰書局。
[35]丁澈士(1995),「時間序列分析應用於屏東平原地下水補注之推估研究」,屏東技術學院學報,第四期,235-244。
[36]柯亭帆、丁澈士、吳峰誼(1996),「屏東平原地下水變動立體化模擬及補注量估算之研究」,土木水利,第二十二卷,第四期,35-45。
[37]施清芳(1996a),「水文時間序列之頻譜分析」,核研季刊,第十八期,97-104。
[38]施清芳(1996b),「水文時間序列之相位傳遞分析」,核研季刊,第十九期,86-91。
[39]施清芳(1996c),「地下水位之潮汐波動分析」,核研季刊,第二十期,68-76。
[40]賈儀平、張閩翔、劉文煜、賴典章(1999),「台北盆地之水文地質研究」,台北盆地地下地質與工程環境專刊,393-406。
[41]陳尉平、李振誥、陳進發(1999),「由河川流量資料與流量歷線推估濁水溪流域地下水補注量」,台灣水利,第四十七卷(4),54-66。
[42]施清芳、李錦地(2000),「濁水溪臨近海岸地下水水位之頻譜分析」,核研季刊,第三十七期,79-93。
[43]施清芳(2000),「應用頻譜分析研究地下水水位擾動特性與反求解地下水水力擴散係數」,中原大學土木工程學系博士論文。
[44]李天龍(2000),「以FFT為架構建立之諧波參數建立方法」,國立中山大學電機工程學系碩士論文。
[45]張宏榮(2001),「序率方法分析地下水水力參數」,中原大學土木工程學系碩士論文。
[46]黃英哲(2001)譯,「數位訊號處理」,五南出版社。
[47]陳進發(2002),「未飽和層土壤水平衡模式解析及其應用之研究」,國立成功大學資源工程學系博士論文。
[48]國立成功大學資源工程系(2003),「台北盆地地下水管制區檢討及土壤液化評估(2/2)」,經濟部水利署。
[49]蒙以正(2004),「數位信號處理-應用MATLAB」,旗標出版股份有限公司。
[50]台北縣政府主計室、台北市政府主計室、基隆市政府主計室,2005。
[51]陳宗顯、詹錢登、陳伸賢、曾均敏(2005),「降雨和地下水位變化之相關性研究」,台灣水利,第五十三卷(4),1-12。
[52]陳文福(2005),台灣的地下水,遠足文化。
[53]許良賜(2005),「使用調和分析推估組水層水文特性之研究」,國立成功大學資源工程學系碩士論文。
[54]許良賜、徐國錦、王建力(2006),「濁水溪沖積扇阻水層水力特性之研究」, 台灣水利,第五十四卷(1),77-86。
[55]陳尉平(2006),「應用河川流量歷線推估台灣地下水補注量」,國立成功大學資源工程系博士論文。
[56]徐婉婷(2006),「利用地下水位氣壓反應求取區域水文參數之研究」,國立成功大學資源工程學系碩士論文。