簡易檢索 / 詳目顯示

研究生: 鄭佳珍
Zheng, Jia-Zhen
論文名稱: 貴金屬奈米粒子修飾棒狀釩鐵氧光催化材料之光電化學水分解之性能研究
Photoelectrochemical Water Splitting Performance of FeVO4 nanorods Photocatalysts Modified with Noble Metal Nanoparticles
指導教授: 蘇彥勳
Su, Yen-Hsun
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 137
中文關鍵詞: 光電化學水分解釩鐵氧貴金屬奈米粒子表面電漿共振
外文關鍵詞: PEC water splitting, FeVO4, noble metal NPs, Surface plasmon resonance
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著全球暖化與環境問題日益加劇,傳統化石燃料的枯竭及汙染成為人類將面臨的一大挑戰,尋求替代的潔淨能源已成為重要議題。近年來,氫能被認為是未來能源市場的重要角色,其中,透過太陽能進行水分解產氫的技術極具發展潛力,水解產氫對環境影響非常小且氫氣作為能源時僅產生水,無溫室氣體排放,具有極佳的環保效益及經濟前景。因此,為了滿足綠色經濟與環保,本研究將開發高效率的光催化材料,進一步透過光電化學作用分解水分子,製備潔淨且可持續的氫能,以達到能源永續發展的目標。
    本研究著重於三斜晶系釩鐵氧(FeVO4)的合成與特性分析,探討不同形貌的釩鐵氧並透過貴金屬奈米粒子,以提升光電化學(PEC)水分解的效率。由於釩鐵氧具備窄能隙及可回收再利用的特性,使其成為極具潛力的材料。我們透過水熱法調整前驅物的濃度製備具有不同形貌的釩鐵氧,結果顯示,釩鐵氧的形貌明顯影響其能隙大小,其中棒狀釩鐵氧相較於球狀釩鐵氧展現更窄的能隙。此外,我們透過自組裝法及紫外光還原法將貴金屬奈米粒子附著於釩鐵氧薄膜上,與純釩鐵氧光陽極相比,金奈米粒子附著在釩鐵氧上(FeVO₄@Au NPs)的光陽極表現出更穩定且高效的PEC水分解性能,其光電流密度提升約1.9倍。此現象可歸因於金奈米粒子吸收光後,金奈米粒子中的電子作為光捕捉中心,吸收光能以激發表面電漿子共振。電漿共振衰減後產生電子-電洞對。這些電子能克服貴金屬奈米粒子與釩鐵氧界面間的蕭特基能障,並注入釩鐵氧中。從而大幅提升釩鐵氧的光電化學性能。本研究不僅推動高效光電化學材料的設計與最佳化,更提出了一種材料合成的新策略,對永續能源技術的發展具有重要貢獻。

    The rapid depletion of fossil fuels and their environmental impacts pose a major global challenge amid growing climate change concerns. As a response, the development of alternative, clean energy sources has gained urgency. Among renewable options, hydrogen has emerged as a promising and sustainable energy carrier, particularly via solar-driven water splitting. This process offers clear environmental benefits, producing only water upon combustion without greenhouse gas emissions, and holds strong potential for both ecological and economic value. Aligned with the global demand for green energy, this study aims to develop high-performance photocatalytic materials for hydrogen generation through photoelectrochemical (PEC) water splitting.
    This research focuses on synthesizing and characterizing triclinic iron vanadate (FeVO4) with controlled morphologies and integrating noble metal nanoparticles (NMNPs) to enhance PEC activity. FeVO4 is a promising semiconductor due to its narrow bandgap and recyclability. Using a hydrothermal method, FeVO4 was synthesized under varying precursor concentrations to yield different morphologies. Results indicate that morphology strongly affects optical properties, with rod-shaped FeVO4 exhibiting a narrower bandgap than its spherical counterpart. Furthermore, NMNPs were deposited onto FeVO4 thin films via self-assembly and UV-light reduction. Compared to pristine FeVO4, Au-decorated photoanodes (FeVO4@Au NPs) showed significantly enhanced stability and PEC performance, with a ~1.9-fold increase in photocurrent density.
    This improvement is mainly due to surface plasmon resonance (SPR) excitation in Au nanoparticles under . The decay of plasmonic energy generates hot electrons that overcome the Schottky barrier and inject into FeVO4 conduction band, facilitating charge separation and transfer. Overall, this work contributes to the design of efficient photoelectrochemical materials and presents a viable strategy for advancing sustainable hydrogen production technologies.

    摘要 I 誌謝 XVI 目錄 XVII 表目錄 XXI 圖目錄 XXII 第一章 緒論 1 1-1 前言 1 1-2 研究背景 2 1-3 研究動機 4 第二章 文獻回顧 5 2-1 氫能的發展 5 2-2 光電化學水解產氫 7 2-2-1 PEC水分解技術的起源與發展 7 2-2-2 太陽能水解產氫的潛力與應用前景 7 2-2-3 PEC水分解的反應機制 8 2-2-4 PEC水分解技術的起源與發展 10 2-3 過渡金屬氧化物 11 2-3-1 過渡金屬氧化物 11 2-3-2 釩鐵氧優勢及應用 11 2-4 釩鐵氧之基本性質 12 2-4-1 釩鐵氧結構 12 2-4-2 提升FeVO4光催化與PEC性能之研究進展 13 2-5 結合貴金屬奈米粒子的效應 15 第三章 研究方法 18 3-1 實驗材料(Experimemtial materials) 18 3-2 材料製程(Experimemtial Process) 20 3-2-1 釩鐵氧奈米粒子(FeVO4 Nanoparticles)製程 20 3-2-2 釩鐵氧光陽極製備 21 3-2-3 海膽金奈米粒子(Au Urchin-like Nanoparticles)製程 22 3-2-4 銀奈米粒子(Ag Nanoparticles)製程 23 3-2-5 金銀奈米粒子(Au+Ag Nanoparticles)製程 23 3-2-6 金奈米粒子/釩鐵氧複合材料(FeVO4@Au NPs)製備 23 3-2-7 海膽金奈米粒子、銀奈米粒子、金銀奈米粒子與釩鐵氧複合電極(FeVO4@Au Urchin-like, FeVO4@Ag NPs, FeVO4@Au+Ag NPs)製備 24 3-3 量測與分析(Measurement and Characteristic) 26 3-3-1 X射線繞射儀(X-ray diffractometer, XRD) 26 3-3-2 拉曼光譜儀(Raman Spectrometer, Raman) 27 3-3-3 掃描式電子顯微鏡(Scanning electron microscope, SEM) 29 3-3-4 穿透式電子顯微鏡(Transmission electron microscope, TEM) 31 3-3-5 原子力顯微鏡(Atomic force microscopy, AFM) 33 3-3-6 近場掃描電化學顯微鏡法(Scanning electrochermical microscopy, SECM) 34 3-3-7 X光光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 35 3-3-8 紫外光電子光譜儀(Ultraviolet photoelectron spectroscopy, UPS) 37 3-3-9 紫外-可見光-近紅外光光譜量測儀(Ultraviolet-visible-near infrared absorption(UV-Vis) spectrophotometer) 38 3-3-10 電化學分析儀(CH instrument, CHI) 40 3-3-11 時域有限差分法(Finite difference time domain, FDTD) 41 第四章 結果與討論 43 4-1 不同形貌釩鐵氧分析 43 4-1-1 X射線繞射儀(X-ray diffractometer, XRD) 43 4-1-2 掃描式電子顯微鏡(Scanning electron microscope, SEM) 45 4-1-3 穿透式電子顯微鏡(Transmission electron microscope, TEM) 47 4-1-4 紫外-可見光-近紅外光譜量測儀(Ultraviolet-visible-near infrared absorption(UV-Vis) spectrophotometer) 54 4-1-5 電化學分析儀(CH instrument, CHI) 56 4-1-6 X光光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 58 4-1-7 拉曼光譜儀(Raman Spectrometer, Raman) 59 4-1-8 紫外光電子光譜儀(Ultraviolet photoelectron spectroscopy, UPS) 60 4-2 貴金屬奈米粒子分析 62 4-2-1 穿透式電子顯微鏡(Transmission electron microscope, TEM) 62 4-2-2 紫外-可見光-近紅外光譜量測儀(Ultraviolet-visible-near infrared absorption(UV-Vis) spectrophotometer) 67 4-2-3 紫外光電子光譜儀(Ultraviolet photoelectron spectroscopy, UPS) 69 4-3 貴金屬奈米粒子與棒狀釩鐵氧之複合催化材料分析 71 4-3-1 掃描式電子顯微鏡(Scanning electron microscope, SEM) 71 4-3-2 X光光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 76 4-3-3 掃描電化學顯微術(Scanning electrochermical microscopy, SECM) 84 4-3-4 電化學分析儀(CH instrument, CHI) 85 4-3-5 自旋極化注入分析(Spin-polarized injection analysis) 88 4-3-6 時域有限差分法(Finite difference time domain, FDTD) 91 4-4 水解產氫前後複合材料分析 92 4-4-1 X射線繞射儀(X-ray diffractometer, XRD) 92 4-4-2 拉曼光譜儀(Raman Spectrometer, Raman) 93 4-4-3 掃描式電子顯微鏡(Scanning electron microscope, SEM) 94 4-4-4 X光光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 99 第五章 結論 101 貴金屬奈米粒子與釩鐵氧(Noble Metal Nanoparticles/FeVO4)之個別分析 101 貴金屬奈米粒子與釩鐵氧(Noble Metal Nanoparticles/FeVO4) 複合薄膜之分析 102 貴金屬奈米粒子與釩鐵氧(Noble Metal Nanoparticles/FeVO4)之光電化學分析 102 參考文獻 104

    1. Wang, Q., Y. Li, and R. Li, Ecological footprints, carbon emissions, and energy transitions: the impact of artificial intelligence (AI). Humanities and Social Sciences Communications, 2024. 11(1).
    2. Zavyalova, E.B., et al., A humanistic model of corporate social responsibility in e-commerce with high-tech support in the artificial intelligence economy. Humanit Soc Sci Commun, 2023. 10(1): p. 274.
    3. de Vries, A., The growing energy footprint of artificial intelligence. Joule, 2023. 7(10): p. 2191-2194.
    4. Probst, D., Aiming beyond slight increases in accuracy. Nature Reviews Chemistry, 2023. 7(4): p. 227-228.
    5. Chen, S., How much energy will AI really consume? The good, the bad and the unknown, in Nature. 2025.
    6. Vilanova, A., et al., The route for commercial photoelectrochemical water splitting: a review of large-area devices and key upscaling challenges. Chem Soc Rev, 2024. 53(5): p. 2388-2434.
    7. FUJISHIMA, A., HONDA, K. , Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972. 238: p. 37–38.
    8. Jafarpour, S. and H. Naghshara, Reactive co-sputter deposition of Ta-doped tungsten oxide thin films for water splitting application. Sci Rep, 2025. 15(1): p. 8302.
    9. Becker, J.P., et al., Modeling and practical realization of thin film silicon‐based integrated solar water splitting devices. physica status solidi (a), 2016. 213(7): p. 1738-1746.
    10. Wang, G., et al., Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett, 2011. 11(7): p. 3026-33.
    11. Luo, J., et al., Cu2O Nanowire Photocathodes for Efficient and Durable Solar Water Splitting. Nano Lett, 2016. 16(3): p. 1848-57.
    12. Chai, X., et al., 3D ordered urchin-like TiO2@Fe2O3 arrays photoanode for efficient photoelectrochemical water splitting. Applied Surface Science, 2019. 470: p. 668-676.
    13. Baruah, S. and J. Dutta, Zinc stannate nanostructures: hydrothermal synthesis. Science and Technology of Advanced Materials, 2019. 12(1).
    14. Evaporation, G.o.T.O.N.b.G.-C.V.-P., <yu-et-al-2004-growth-of-ternary-oxide-nanowires-by-gold-catalyzed-vapor-phase-evaporation.pdf>. The Journal of Physical Chemistry B, 2004. 108 (24): p. 8249-8253.
    15. Verma, A., et al., Enhanced photoelectrochemical response of plasmonic Au embedded BiVO(4)/Fe(2)O(3) heterojunction. Phys Chem Chem Phys, 2017. 19(23): p. 15039-15049.
    16. Wang, X., X. Li, and J. Low, Au decorated BiVO(4) inverse opal for efficient visible light driven water oxidation. RSC Adv, 2021. 11(15): p. 8751-8758.
    17. Orimolade, B.O. and O.A. Arotiba, Enhanced photoelectrocatalytic degradation of diclofenac sodium using a system of Ag-BiVO(4)/BiOI anode and Ag-BiOI cathode. Sci Rep, 2022. 12(1): p. 4214.
    18. Li, Y., et al., FeVO4 nanowires for efficient photocatalytic CO2 reduction. Catalysis Science & Technology, 2022. 12(10): p. 3289-3294.
    19. Assessing Lifecycle Greenhouse Gas Emissions Associated with Electricity Use for the Section 45V Clean Hydrogen Production Tax Credit. 2025: U.S. Department of energy.
    20. Boettcher, S.W., Introduction to Green Hydrogen. Chem Rev, 2024. 124(23): p. 13095-13098.
    21. Pereira, J., et al., Hydrogen Production, Transporting and Storage Processes—A Brief Review. Clean Technologies, 2024. 6(3): p. 1260-1313.
    22. Bockris, J.O.D., B.; Cocke, D.; Ghoroghchian, J. , On the splitting of water. ScienceDirect, 1985. 10(3): p. 179–201.
    23. Gao, R., et al., Transformation of CO2 into liquid fuels and synthetic natural gas using green hydrogen: A comparative analysis. Fuel, 2021. 291.
    24. Sollai, S., et al., Renewable methanol production from green hydrogen and captured CO2: A techno-economic assessment. Journal of CO2 Utilization, 2023. 68.
    25. Odenweller, A. and F. Ueckerdt, The green hydrogen ambition and implementation gap. Nature Energy, 2025. 10(1): p. 110-123.
    26. Williams, R., Becquerel Photovoltaic Effect in Binary Compounds. The Journal of Chemical Physics, 1960. 32(5): p. 1505-1514.
    27. A. Heller , D.K.a.K.R., Electrochem. Soc. Interface. Soc. Interface, 2010. 19: p. 37.
    28. Okada, Y., et al., Development of dehydrogenation catalyst for hydrogen generation in organic chemical hydride method. International Journal of Hydrogen Energy, 2006. 31(10): p. 1348-1356.
    29. Li, X., Z. Li, and J. Yang, Proposed photosynthesis method for producing hydrogen from dissociated water molecules using incident near-infrared light. Phys Rev Lett, 2014. 112(1): p. 018301.
    30. Michael G. Walter, E.L.W., James R. McKone, Shannon W. Boettcher,† Qixi Mi, Elizabeth A. Santori,and Nathan S. Lewis*, Solar water splitting cells. Chem. Rev., 2010. 110: p. 6446–6473.
    31. Kumar, M., et al., Recent trends in photoelectrochemical water splitting: the role of cocatalysts. NPG Asia Materials, 2022. 14(1).
    32. Ding, C., et al., Photoelectrocatalytic Water Splitting: Significance of Cocatalysts, Electrolyte, and Interfaces. ACS Catalysis, 2016. 7(1): p. 675-688.
    33. Zhang, Z. and J.T. Yates, Jr., Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem Rev, 2012. 112(10): p. 5520-51.
    34. Zhang, H., et al., Effective charge separation in photoelectrochemical water splitting: a review from advanced evaluation methods to materials design. Sustainable Energy & Fuels, 2024. 8(11): p. 2357-2382.
    35. Iwama, R., et al., Design and Analysis of Metal Oxides for CO(2) Reduction Using Machine Learning, Transfer Learning, and Bayesian Optimization. ACS Omega, 2022. 7(12): p. 10709-10717.
    36. Garba, M.D., et al., CO2 towards fuels: A review of catalytic conversion of carbon dioxide to hydrocarbons. Journal of Environmental Chemical Engineering, 2021. 9(2).
    37. Pawar, R.C., et al., Growth of 3D nanowall-like structures of FeVO4 by controlling reaction rate for effective CO2 reduction using UV-visible light. Journal of Environmental Chemical Engineering, 2023. 11(3).
    38. Yang, M., et al., Advanced strategies for promoting the photocatalytic performance of FeVO4 based photocatalysts: A review of recent progress. Journal of Alloys and Compounds, 2023. 941.
    39. Shruthi, M., et al., Influence of FeVO4 crystallinity on oxygen evolution reaction activity. Ceramics International, 2024. 50(2): p. 3366-3372.
    40. Alsulami, Q.A., et al., One-step preparation of RGO/Fe(3)O(4)-FeVO(4) nanocomposites as highly effective photocatalysts under natural sunlight illumination. Sci Rep, 2022. 12(1): p. 6565.
    41. Anwar, N., et al., Synthesis and Characterization of Ferric Vanadate Nanorods for Efficient Electrochemical Detection of Ascorbic Acid. ACS Omega, 2023. 8(17): p. 15450-15457.
    42. Li, D., et al., Nano-sized FeVO4·1.1H2O and FeVO4 for peroxymonosulfate activation towards enhanced photocatalytic activity. Journal of Environmental Chemical Engineering, 2022. 10(2).
    43. Zhang, M., et al., Nanostructured Iron Vanadate Photoanodes with Enhanced Visible Absorption and Charge Separation. ACS Applied Energy Materials, 2022. 5(3): p. 3409-3416.
    44. Zeng, Q., et al., Ordered Ti-doped FeVO(4) nanoblock photoanode with improved charge properties for efficient solar water splitting. J Colloid Interface Sci, 2021. 604: p. 562-567.
    45. Lehnen, T., et al., Hydrothermally grown porous FeVO4nanorods and their integration as active material in gas-sensing devices. J. Mater. Chem. A, 2014. 2(6): p. 1862-1868.
    46. Garg, P., et al., FeVO4-based solution-processed all oxide self-biased fast photodetectors. Journal of Materials Chemistry C, 2024. 12(29): p. 11033-11040.
    47. Baeis, M.G., S.H. Mousavi, and M.R. Jeddy, Controlled synthesis and characterization of iron vanadate magnetic nanoparticles: investigation it’s photodegradation of Rhodamine B. Journal of Materials Science: Materials in Electronics, 2016. 28(2): p. 1480-1484.
    48. Sajid, M.M., et al., Photocatalytic performance of ferric vanadate (FeVO4) nanoparticles synthesized by hydrothermal method. Materials Science in Semiconductor Processing, 2021. 129.
    49. Nithya, V.D., et al., Synthesis and characterization of FeVO4 nanoparticles. Materials Research Bulletin, 2011. 46(10): p. 1654-1658.
    50. J. Muller, J.C.J., Synthese sous haute pression d'oxygene d'une forme dense ordonne´e de FeVO4 et mise en evidence d'une varie´te´allotropique de structure CrVO4. Solid State Chem, 1975. 14: p. 8-13.
    51. Y. Hotta, Y.U., N. Nakayama, K. Kosuge, S. Kachi, M. Shimada, M. Koizumi, J., Pressure-products diagram of FexV1−xO2 system (0 ≤ x ≤ 0.5). Solid State Chem., 1984. 55(3): p. 314-319.
    52. Wu, J., et al., An ultrathin TiO2 interfacial layer enhancing the performance of an FeVO4 photoanode for water splitting. Sustainable Energy & Fuels, 2021. 5(1): p. 261-266.
    53. Sajid, M.M., et al., The highly stable construction of Pt/FeVO4
    heterostructure with improving photocatalytic
    performance and growth mechanism for •O2 and
    •OH production based on Electron Spin Resonance
    study. 2022.
    54. Gong, L., et al., Tailoring surface states by sequential doping of Ti and Mg for kinetically enhanced hematite photoanode. J Colloid Interface Sci, 2019. 542: p. 441-450.
    55. Chang, S., et al., FeVO(4) Nanopolyhedron Photoelectrodes for Stable and Efficient Water Splitting. ChemSusChem, 2021. 14(14): p. 3010-3017.
    56. Liu, Z., et al., FeVO4 nanobelts: controllable synthesis by electrospinning and visible-light photocatalytic properties. Journal of Sol-Gel Science and Technology, 2016. 82(1): p. 67-74.
    57. Ye, Z., et al., Exploiting the LSPR effect for an enhanced photocatalytic hydrogen evolution reaction. Phys Chem Chem Phys, 2023. 25(4): p. 2706-2716.
    58. Wang, H., et al., Highly sensitive biosensors with resonant coupling of plasmon-waveguide resonance to localized surface plasmons. Journal of Materials Chemistry C, 2025.
    59. Linic, S., et al., Photochemical transformations on plasmonic metal nanoparticles. Nat Mater, 2015. 14(6): p. 567-76.
    60. Yin, P., et al., Plasmon-induced carrier polarization in semiconductor nanocrystals. Nat Nanotechnol, 2018. 13(6): p. 463-467.
    61. Ghobadi, T.G.U., et al., Strong Light-Matter Interactions in Au Plasmonic Nanoantennas Coupled with Prussian Blue Catalyst on BiVO(4) for Photoelectrochemical Water Splitting. ChemSusChem, 2020. 13(10): p. 2577-2588.
    62. Ghasemi, A., Chapter 2 - Ferrite characterization techniques, in Magnetic Ferrites and Related Nanocomposites, A. Ghasemi, Editor. 2022, Elsevier. p. 49-124.
    63. Uo, M., T. Wada, and T. Sugiyama, Applications of X-ray fluorescence analysis (XRF) to dental and medical specimens. Japanese Dental Science Review, 2014.
    64. Jones, R.R., et al., Raman Techniques: Fundamentals and Frontiers. Nanoscale Res Lett, 2019. 14(1): p. 231.
    65. Hanlon, E., et al., Prospects for in vivo Raman spectroscopy. Physics in medicine and biology, 2000. 45: p. R1-59.
    66. Ul-Hamid, A., Components of the SEM. Springer, Cham, 2018: p. 15–76.
    67. Ezzahmouly, M., et al., Micro-computed tomographic and SEM study of porous bioceramics using an adaptive method based on the mathematical morphological operations. Heliyon, 2019. 5: p. e02557.
    68. Tanaka, N., Structure and Imaging of a Transmission Electron Microscope (TEM), in Electron Nano-imaging: Basics of Imaging and Diffraction for TEM and STEM, N. Tanaka, Editor. 2024, Springer Japan: Tokyo. p. 17-31.
    69. David B. Williams, C.B.C., Transmission Electron Microscopy, ed. O.E. Krivanek. 1978: Springer ScienceþBusiness Media, LLC.
    70. Mišić Radić, T.V., P.; Čačković, A.; Dulebo, A., Basic Principles and Operation Modes of AFM. Encyclopedia. . Encyclopedia, 2023.
    71. Dukic, M., J.D. Adams, and G.E. Fantner, Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging. Scientific Reports, 2015. 5(1): p. 16393.
    72. Zhuangqun Huang, a.P.D.W., a Chunzeng Li,a Rakesh Poddar,a, et al., An Introduction to AFM-Based Scanning Electrochemical Microscopy: PeakForce SECM. 2017.
    73. Grimmgroup, D.o.C.a.B., Worcester Polytechnic Institute. XPS and UPS Background
    74. Whitten, J.E., Ultraviolet photoelectron spectroscopy: Practical aspects and best practices. Applied Surface Science Advances, 2023. 13.
    75. Tom, J., UV-Vis Spectroscopy: Principle, Strengths and Limitations and Applications, T. Networks, Editor. 2023.
    76. Qin, X., et al., Urea-assisted hydrothermal synthesis of a hollow hierarchical LiNi(0.5)Mn(1.5)O(4) cathode material with tunable morphology characteristics. RSC Adv, 2018. 8(53): p. 30087-30097.
    77. Ghiyasiyan-Arani, M., et al., An easy sonochemical route for synthesis, characterization and photocatalytic performance of nanosized FeVO4 in the presence of aminoacids as green capping agents. Journal of Materials Science: Materials in Electronics, 2018. 29: p. 1-12.
    78. Li, Y., M. Zhai, and H. Xu, Controllable synthesis of sea urchin-like gold nanoparticles and their optical characteristics. Applied Surface Science, 2019. 498: p. 143864.
    79. Youn, S., S. Jeong, and D.H. Kim, Effect of oxidation states of vanadium precursor solution in V2O5/TiO2 catalysts for low temperature NH3 selective catalytic reduction. Catalysis Today, 2014. 232: p. 185-191.
    80. Wu, Q.-H., et al., Photoelectron spectroscopy study of oxygen vacancy on vanadium oxides surface. Applied Surface Science, 2004. 236(1): p. 473-478.

    無法下載圖示 校內:2030-08-08公開
    校外:2030-08-08公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE