| 研究生: |
高基航 Kao, Chi-Hang |
|---|---|
| 論文名稱: |
氧化鈦含量對大氣電漿熔射氧化鋁塗層熱衝擊暨磨潤性質影響研究 Effects of TiO2 content on thermal shock and tribological behavior of Al2O3 APS coatings |
| 指導教授: |
蘇演良
Su, Yean-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 陶瓷塗層 、熱衝擊 、磨耗 |
| 外文關鍵詞: | ceramic coating, thermal shock, tribological |
| 相關次數: | 點閱:61 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用大氣電漿噴塗製程技術,於中碳鋼底材上披覆氧化鋁基熔射塗層;塗層與底材間披覆中介層以增加塗層與底材間之黏結性。研究的目標有二:(1)探討塗層熱衝擊破壞機構,(2) 以不同電流製備進行熔射塗層磨耗試驗,並從顯微結構,相結構,顯微硬度值,摩擦係數,來探討其磨耗機構。
研究設備有X光繞射儀,場發射型掃瞄式電子顯微鏡,環境掃描式電子顯微鏡,維克氏顯微硬度機,表面粗度儀,大氣熱處理爐,SRV磨耗試驗機。
由實驗結果得知:(1) 氧化鋁基熔射塗層隨著氧化鈦比例提升,塗層硬度值分佈範圍變大,奈米尺度結構塗層由於團聚造粒時成分均勻分佈,所以塗層硬度分佈範圍相對小。(2) 塗層受熱衝擊破壞,大裂痕主要從陶瓷塗層和中介層間產生,隨著氧化鈦比例提升塗層內部也會在氧化鋁和氧化鈦交界處產生裂痕,使塗層提早失效。(3) 進行850℃熱衝擊時,氧化鋁會相變產生δ-Al2O3,非化學當量的氧化鈦也會吸收環境中氧氣形成金紅石。(4) 不同尺度結構塗層,以奈米尺度具較佳耐磨耗性,可歸因於部份融熔區,阻礙了裂痕的成長。(5)改變噴塗電流對製備塗層性質影響不大。(6) 磨潤性質方面,使用不同對手材有不同的磨耗機制產生。
The alumina-based coatings were deposited on the mild carbon steel substrates pre-coated with NiAl bondcoat by using APS system in this research. The main purpose of this research were: (1) Discussed the thermal shock failure mechanism for ceramic coatings. (2) Deposited ceramic coatings by different current to carry out wear test, and from microstructure, phase structure, micro-hardness, coefficient of friction to discuss the failure mechanism.
The experiment instrument for this research is including: X-ray Diffractometer, Enviromental Scanning Electron Microscope, Field-Emision Scanning Electron Microscope, Vickers hardness tester, Surface Profilometer, Heat-Treatment Furnace, Schwingung Reibung and Verschleiss Tester.
The results indicate that: (1) The hardness distribution of coatings were increased with increasing the ratio of titania; however the hardness distribution of the nanostructure coating prepared by agglomerated particle was more narrow. (2) The macrocrack was generated between ceramic coating and bondcoat, with increasing the ratio of titania the crack also can generated between alumina splat and titania splat, it would make coating failure more quickly. (3) After 850 ℃ thermal test alumina trasformed to δ-Al2O3, the non-stoichimatic titania also absorbed the oxygen from environment to formation of rutile. (4) The nanostructure coating had the best wear resistance among other coatings, due to its part-melted zone could arrest the crack. (5) The coatings prepared by different current had similar propertis. (6) Different wear performance was found with using different counter balls.
1. Sugehis Liscano, Linda Gil, Mariana H. Staia, Correlation between microstructural characteristics and the abrasion wear resistance of sealed thermal-sprayed coatings, Surface and Coatings Technology, 200, 5-6, 1310-1314, 2005.
2. C. Navas, R. Colaço, J. de Damborenea, R. Vilar, Abrasive wear behavior of laser clad and flame sprayed-melted NiCrBSi coatings, Surface and Coatings Technology, 200, 24, 6854-6862, 2006.
3. Z. Tao, C. Xun, W. Shunxing, Z. Shian, Effect of CeO2 on microstructure and corrosive wear behavior of laser-cladded Ni/WC coating, Thin Solid Films 379, 1-2, 128-132, 2000.
4. A. Conde, R. Colaço, J. de Damborenea, Corrosion behavior of steels after laser surface melting, Materials and design, 21, 5, 441-445, 2000.
5. A. Frenk, W. Kurz, Microstructural effects on the sliding wear resistance of a cobalt-based alloy, Wear, 174, 1-2, 81-91, 1994.
6. B.A. Kushner, E.R. Novinski, Thermal Spray Coatings, ASM Handbook, 18, 829-833, 1992.
7. P. Crook, Friction and Wear of Hardfacing Alloy, ASM Handbook, 18, 758-765, 1992.
8. K.-H. Zum Gahr, Microstructure and Wear of Materials, Elsevier Science Publishers BV,Amsterdam, 1987.
9. A.R. Nicoll, A. Bachmann, J.R. Moens, G. Loewe, The application of high velocity combustionspraying, in: C.C. Berndt (Ed.), Thermal Spray International Advance in Coatings Technology, ASM International, Metals Park, OH, 149–152, 1992.
10. S.F. Wayne, S. Sampath, Journal of Thermal Spray Technology, 1, 304, 1992.
11. Y. Wang, P. Kettunen, The optimization of spraying parameters for WC–Co coatings by plasmaand detonation-gun spraying, in: C.C. Berndt (Ed.), Thermal Spray International Advances in Coatings Technology, ASM International, Metals Park, OH, 575–580, 1992.
12. Th. Lampe, S. Eisenberg, E. Rodríguez Cabeo, Plasma surface engineering in the automotive industry-trends and future prospectives, Surface and Coatings Technology, 174-175, 1-7, 2003.
13. Hanbey Hazar, Ugur Ozturk, The effects of Al2O3-TiO2 coating in a diesel engine on performance and emission of corn oil methyl ester, Renewable Energy, xxx , 1-6, 2010.
14. K. Ramachandran, V. Selvarajan, P. V. Ananthapadmanabhan, K. P. Sreekumar, Microstructure, adhesion, microhardness, abrasive wear resistance and electrical resistivity of the plasma sprayed alumina and alumina-titania coatings, Thin Solid Films, 315, 1-2, 144-152, 1998.
15. M.F. Morks, K. Akimoto, The role of nozzle diameter on the microstructure and abrasion wear resistance of plasma sprayed Al2O3/TiO2 composite coatings, Journal of Manufacturing Processes, 10, 1, 1-5, 2008.
16. E.H. Jordan, M. Gell, Y. H. Sohn, D. Goberman, L. Shaw, S. Jiang, M. Wang, T. D. Xiao, Y. Wang, P. Strutt, Fabrication and evaluation of plasma sprayed nanostructured alumina-titania coatings with superior properties, Materials Science & Engineering A, 301, 1, 80-89, 2001.
17. Pavitra Bansal, Nitin P. Padture, Alexandre Vasiliev, Improved interfacial mechanical properties of Al2O3-13wt%TiO2 plasma-sprayed coatings derived from nanocrystalline powders, Acta Materialia, 51, 10, 2959-2970, 2003.
18. Xinhua Lin, Yi Zeng, Chuanxian Ding, Pingyu Zhang, Effects of temperature on tribological properties of nanostructured and conventional Al2O3-3wt.%TiO2 coatings, Wear, 256, 11-12, 1018-1025, 2004.
19. Y. Xie, H.M. Hawthorne, Wear mechanism of plasma-sprayed alumina coating in sliding contacts with harder asperities, Wear, 225-229, 90-103, 1999.
20. Xinhua Lin, Yi Zeng, Soo Who Lee, Chuanxian Ding, Characterization of alumina-3wt.%Titania coating prepared by plasma spraying of nanostructured powders, Journal of the European Ceramic Society, 24, 4, 627-634, 2004.
21. Chang-sheng Zhai, Jun Wang, Fei Li, Jing-chao Tao, Yi Yang, Bao-de Sun, Thermal shock properties and failure mechanism of plasma sprayed Al2O3/TiO2 nanocomposite coatings, Ceramics International, 31, 6, 817-824, 2005.
22. R. Yılmaz, A.O. Kurt, A. Demir, Z. Tatlı, Effects of TiO2 on the mechanical properties of the Al2O3-TiO2 plasma sprayed coating, Journal of the European Ceramic Society, 27, 2-3, 1319-1323, 2007.
23. K. Vijayakumar, Apurbba Kr. Sharma, M.M. Mayuram, R. Krishamurthy, Response of Plasma-sprayed alumina-titania ceramic composite to high-frequency impact loading, Materials Letters, 54, 5-6, 403-413, 2002.
24. Wei Tian, You Wang, Yong Yang, Chonggui Li, Toughening and strengthening mechanism of plasma sprayed nanostructured Al2O3—3wt.%TiO2 coatings, Surface and Coatings Technology, 204, 5, 642-649, 2009.
25. Ozkan Sarikaya, Effect of some parameters on microstructure and hardness of alumina coatings prepared by the air plasma spraying process, Surface and Coatings Technology, 190, 2-3, 388-393, 2005.
26. Eun Pil Song, Jeehoon Ahn, Sunghak Lee, Nack J. Kim, Effects of critical plasma spray parameter and spray distance on wear resistance of Al2O3-8wt.%TiO2 coatings plasma-sprayed with nanopowders, Surface and Coatings Technology, 202, 15, 3625-3632, 2008.
27. Xinhua Lin, Yi Zeng, Xuebin Zheng, Chuanxian Ding, Thermal diffusivity of plasma sprayed monolithic coating of alumina-3wt.%titania produced with nanostructured powder, Surface and Coatings Technology, 195, 1, 85-90, 2005.
28. Dianran Yan, Jining He, Xiangzhi Li, Yangaia Liu, Jianxin Zhang, Huili Ding, An investigation of the corrosion behavior of Al2O3-based ceramic composite coatings in dilute HCl solution, Surface and Coatings Technology, 141, 1, 1-6, 2001.
29. Sofiane Guessasma, Mokhtar Bounazef, Philippe Nardin, Tahar Sahraoui, Wear behavior of alumina-titania coatings:analysis of process and parameter, Ceramics International, 32, 1, 13-19, 2006.
30. Hélène Ageorges, Pavel Ctibor, Comparison of the structure and wear resistance of Al2O3-13wt.%TiO2 coatings made by GSP and WSP plasma process with two different powders, Surface and Coatings Technology, 202, 18, 4362-4368, 2008.
31. K.A. Habib, J.J. Saura, C. Ferrer, M.S. Damra, E. Giménez, L. Cabedo, Comparison of flame sprayed Al2O3/TiO2 coatings: Their microstructure, mechanical properties and tribology behavior, Surface and Coatings Technology, 201, 3-4, 1436-1443, 2006.
32. Jianxin Zhang, Jining He, Yanchun Dong, Xiangzhi Li, Dianran Yan, Microstructure characteristics of Al2O3-13wt.%TiO2 coating plasma spray deposited with nanocrystalline powders, Journal of Materials Processing Technology, 197, 1-3, 31-35, 2008.
33. J. Rodriguez, A. Rico, E. Otero, W.M. Rainforth, Indentation properties of plasma sprayed Al2O3-13%TiO2 nanocoatings, Acta Materialia, 57, 11, 3148-3156, 2009.
34. Y. Wang, W. Tian, Y. Yang, Thermal shock behavior of nanostructured and conventional AL2O3/13wt%TiO2 coatings fabricated by plasma spraying, Surface and Coatings Technology, 201, 18, 7746-7754, 2007.
35. Leon L. Shaw, Daniel Goberman, Ruiming Ren, Maurice Gell, Stephen Jiang, You Wang, T. Danny Xiao, Peter R. Strutt, The dependency of microstructure and properties of nanostructured coatings on plasma spray conditions, Surface and Coatings Technology, 130, 1, 1-8, 2000.
36. 蕭威典,陶瓷/金屬材料噴塗技術之發展與應用,工業材料雜誌,164–169,2004。
37. 呂明生、蕭威典、劉茂賢,熱熔射塗層技術在工業界之應用,工業材料雜誌,151–158,2008。
38. 劉茂賢,熔射製程與即時監控技術之原理與應用簡介,工業材料雜誌,123–131,2005。
39. Ken Brookes, Metal Powder Report 61, 42–49, 2006.
40. 蕭威典,熔射覆膜技術,全華科技圖書股份有限公司,台北市,2006。
41. J.M. Miguel, J.M. Guilemany, S. Vizcaino, Tribological study of NiCrBSI coating obtained by different processes, Tribology International, 36, 3, 181-187, 2003.
42. 蕭威典、劉武漢,電漿熔射技術簡介,工業材料雜誌,158–165,2005 。
43. 蕭威典、劉武漢,電漿熔射熱障塗層在高溫防護上之應用,工業材料雜誌,171–178,2006。
44. J. Tikkanen, K.A. Gross, C.C. Berndt, V. Pitkanen, J. Keskinen, S. Raghu, M. Rajala, J. Karthikeyan, Characteristics of the liquid flame spray process, Surface and Coatings Technology, 90, 3, 210-216, 1997.
45. J. Karthikeyan, C.C. Berndt, J. Tikkanen, J.Y. Wang, A.H. King, H. Herman, Nanomaterial powders and deposits prepared by flame spray processing of liquid precursors, Nanostructured Materials, 8, 1, 61–74, 1997.
46. J. Karthikeyan, C.C. Berndt, J. Tikkanen, J.Y. Wang, A.H. King, H. Herman, Preparation of nanophase materials by thermal spray processing of liquid precursors, Nanostructured Materials, 9, 1-8, 137-140, 1997.
47. 李文亞、李長久,冷噴塗特性,中國表面工程,12–16,2002。
48. 吳中仁、劉武漢、蕭威典、楊寧、劉茂賢、黃金德,超音速熔射技術簡介及其應用,工業材料雜誌,117–122,2005。
49. W. Tian, Y. Wang, Y.Yang, Three body abrasive wear characteristics of plasma sprayed conventional and nanostructured Al2O3-13%TiO2 coatings, Tribology International, 43, 5-6, 876-881, 2010.
50. Wei Tian, You Wang, Tao Zhang, Yong Yang, Sliding wear and electrochemical corrosion behavior of plasma sprayed nanocomposite Al2O3-13%TiO2 coatings, Materials Chemistry and Physics, 118, 1, 37-45, 2009.
51. A. Rico, J. Rodriguez, E. Otero, P. Zeng, W.M. Rainforth, Wear behaviour of nanostructured alumina-titania coatings deposited by atmospheric plasma spray, Wear, 267, 5-8, 1191-1197, 2009.
52. Ying Chun Zhu, Chuan Xian Ding, Ken Yukimura, T. Danny Xiao, Peter R. Strutt, Depositon and characterization of nanostructured WC-Co coating, Ceramics International, 27, 6, 669-674, 2001.
53. D. A. Stewart, P. H. Shipway, D. G. McCartney, Abrasive wear behaviour of conventional and nanocomposite HVOF-sprayed WC-Co coatings, Wear, 225-229, 789-798, 1999.
54. J. M. Guilemany, S. Dosta, J. R. Miguel, The enhancement of the properties of WC-Co HVOF coatings through the use of nanostructured and microstructured feedstock powders, Surface and Coatings Technology, 201, 3-4, 1180-1190, 2006.
55. Jin-hong Kim, Hyun-seok Yang, Kyeong-ho Baik, Byeung Geun Seong, Chang-hee Lee, Soon Young Hwang, Development and properties of nanostructured thermal spray coatings, Current Applied Physics, 6, 6, 1002-1006, 2006.
56. Hui Chen, Guoqing Gou, Mingjing Tu, Yan Liu, Characteristics of nano particles and their effect on the formation of nanostructures in air plasma spraying WC-17Co coating, Surface and Coatings Technology, 203, 13, 1785-1789, 2009.
57. B. H. Kear, G. Skandan, R. K. Sadangi, Factors controlling decarburization in HVOF sprayed nano-WC/Co hardcoatings, Scripta Materialia, 44, 8-9, 1703-1707, 2001.
58. Ying-chun Zhu, Ken Yukimura, Chuan-xian Ding, Ping-yu Zhang, Tribological properties of nanostructured and conventional WC-Co coatings deposited by plasma spraying, Thin Solid Films, 388, 1-2, 277-282, 2001.
59. G. Skandan, R. Yao, R. Sadangi, B. H. Kear, Y. Qiao, L. Liu, T. E. Fischer, Multimodal coatings: a new concept in thermal spraying, Journal of Thermal Spray Technology, 9, 329-331, 2000.
60. Hyung-Jun Kim, Chang-Hee Lee, Soon-Young Hwang, Superhard nano WC-12%Co coating by cold spray deposition, Materials Science and Engineering A, 391, 1-2, 243-248, 2005.
61. CUI Tong, WANG Ji-jie, GUAN Ren-guo, Chen Li-qing, QIU Guan-ming, Microstructures and properties of thermal barrier coatings plasma-sprayed by nanostructured zirconia, Proceedings of Sino-Swedish Structural Materials Symposium, 116-120, 2007.
62. Huang Chen, Yefan Zang, Chuanxian Ding, Tribological properties of nanostructured zirconia coatings deposited by plasma spraying, Wear, 253, 7-8, 885-893, 2002.
63. J.F. Li, H. Liao, X.Y. Wang, B. Normand, V. Ji, C.X. Ding, C. Coddet, Improvement in wear resistance of plasma sprayed yttria stabilized zirconia coating using nanostructured powder, Tribology International, 37, 1, 77-84, 2004.
64. Bo Liang, Chuanxian Ding, Hanlin Liao, Christian Coddet, Phase compositon and stability of nanostructured 4.7wt.% yttria-stabilized zirconia coatings deposited by atmospheric plasma spraying, Surface and Coatings Technology, 200, 14-15, 4549-4556, 2006.
65. Bo Liang, Chuanxian Ding, Phase composition of nanostructured zirconia coatings deposited by air plasma spraying, Surface and Coatings Technology, 191, 2-3, 267-273, 2005.
66. Zhijian Yin, Shunyan Tao, Xiaming Zhoua, Chuanxian Ding, Particle in-flight behavior and its influence on the microstructure and mechanical properties of plasma-sprayed Al2O3 coatings, Journal of the European Ceramic Society, 28, 6, 1143-1148, 2008.
67. S. Yugeswaran, V. Selvarajan, M. Vijay, P.V. Ananthapadmanabhan, K.P. Sreekumar, Influence of critical plasma spraying parameter (CPSP) on plasma sprayed Alumina-Titania composite coatings, Ceramics International, 36, 1, 141-149, 2010.
68. Eun Pil Song, Jeehoon Ahn, Sunghak Lee, Nack J. Kim, Microstructure and wear resistance of nanostructured Al2O3-8wt.%TiO2 coatings plasma-sprayed with nanopowders, Surface and Coatings Technology, 201, 3-4, 1309-1315, 2006.
69. Şenol Yılmaz, An evaluation of plasma-sprayed coatings based on Al2O3 and Al2O3-13wt.%TiO2 with bond coat on pure titanium substrate, Ceramics International, 35, 5, 2017-2022, 2009.
70. Meidong Wang, Leon L. Shaw, Effects of the powder manufactureing method on microstructure and wear performance of plasma sprayed alumina-titania coatings, Surface and Coatings Technology, 202, 1, 34-44, 2007.
71. V. Fervel, B. Normand, C. Coddet, Tribological behavior of plasma sprayed Al2O3-based cermet coatings, Wear, 230, 1, 70-77, 1999.
72. Józef Iwaszko, Surface remelting treatment of plasma-sprayed Al2O3+13wt.%TiO2 coatings, Surface and Coating Technology, 201, 6, 3443-3451, 2006.
73. S. Cem Okumus, Microstructural and mechanical characterization of plasma sprayed Al2O3-TiO2 composite ceramic coating on Mo/cast iron substrates, Materials Letters, 59, 26, 3214-3220, 2005.
74. J.H. Ouyang, S. Sasaki, Tribological characteristics of low-pressure plasma-sprayed Al2O3 coating from room temperature to 800 ℃, Tribology International, 38, 1, 49-57, 2005.
75. Y. Wang, W. Tian, Y. Yang, C.G. Li, L. Wang, Investigation of stress field and failure mode of plasma sprayed Al2O313%TiO2 coatings under thermal shock, Materials Science and Engineering A, 516, 1-2, 103-110, 2009.
76. G. N. Heintze, S. Uematsu, Preparation and structures of plasma-sprayed γ- and α-Al2O3 coatings, Surface and Coatings Technology, 50, 3, 213-222, 1992.
77. S. Rangaswamy, H. Herman, S. Safai, Thermal expansion study of plasma-sprayed oxide coatings, Thin Solid Films, 73, 1, 43-52, 1980.
78. Yang Yuanzheng, Zhu Youlan, Liu Zhengyi, Chuang Yuzhi, Laser remelting of plasma sprayedAl2O3 ceramic coatings and subsequent wear resistance, Materials Science and Engineering A, 291, 1-2, 168-172, 2000.
79. Sulzer Metco公司網站產品目錄。
80. M. Gell, E. H. Jordan, Y. H. Sohn, D. Goberman, L. Shaw, T. D. Xiao, Development and implementation of plasma sprayed nanostructured ceramic coatings, Surface and Coatings Technology, 146-147, 48-54, 2001.
81. D. Goberman, Y. H. Sohn, L. Shaw, E. Jordan, M. Gell, Microstructure development of Al2O3-13wt.%TiO2 plasma sprayed coatings derived from nanocrystalline powders, Acta Materialia, 50, 5, 1141-1152, 2002.
82. Hong Luo, Daniel Goberman, Leon Shaw, Maurice Gell, Indentation fracture behavior of plasma-sprayed nanostructured Al2O3-13wt.%TiO2 coatings, Materials Science and Engineering A, 346, 1-2, 237-245, 2003.
83. Anna E. McHale, Phase Equilibria Diagrams, Ceramics Division, National Institute of Standards and Technology, Ohio, 1992.
84. N. Dejang, A. Watcharapasorn, S. Wirojupatump, P. Niranatlumpong, S. Jiansirisomboon, Fabrication and properties of plasma-sprayed Al2O3/TiO2 composite coatings: A role of nano-sized TiO2 addition, Surface and Coatings Technology, 204, 9-10, 1651-1657, 2010.
85. 張書銘,大氣電漿熔射不同比例及奈米結構氧化鋁-氧化鈦塗層磨潤性質研究,國立成功大學機械工程研究所碩士論文,台南,2010。
86. 李盈達,電漿熔射高介電性Al2O3-TiO2塗層之研究,國立交通大學機械工程研究所碩士論文,新竹,2001。
校內:2013-07-07公開