簡易檢索 / 詳目顯示

研究生: 林子捷
Lin, Tz-Jie
論文名稱: 波紋管銲接膜片尺寸優化分析
Optimum Geometry of Welded Bellows under Tension and Compression
指導教授: 褚晴暉
Chue, Ching-Hwei
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 73
中文關鍵詞: 應力強度因子有限元素法銲接波紋管
外文關鍵詞: finite element method, welded bellows, stress intensity factor
相關次數: 點閱:64下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文採用有限元素法中二維的軸對稱元素模型,將共16對膜片的銲接波紋管,透過其具重複性的特點,簡化成兩對膜片進行尺寸優化分析。

    基於靜態及線彈性行為假設前提,分析銲接波紋管在各種不同的工作條件下之應力分布與伸縮剛性。藉由有限元素分析所獲得的計算結果,探討膜片各項幾何參數在力學行為上扮演的角色,以尋求膜片形狀與尺寸的最佳組合。接著導入破壞力學來分析銲道部分類似裂縫之結構,以了解銲道熔滲深度的影響,期望在形狀尺寸優化時,能有效提昇銲接波紋管之使用壽命。

    The objective of this paper is to determine the optimum geometry of circular waved diaphragms in welded bellows by performing static axisymmetric finite element analyses. For simplicity, 16 pairs of repeated diaphragms will be reduced to 2 pairs only. Based on linear elasticity associated with finite deformation, the stress distribution in diaphragm and the axial stiffness of the bellow can be computed subjected to tension or compression with or without internal pressure.

    The results show that there are six radii of curvature in diaphragms A and B are important in the optimum design. This paper modifies the size and geometry of the diaphragms offered by MIRDC according to the requirement of least effective stresses together with maximum compliance. The optimized sizes depend on the internal pressure, the material properties, and the contact area of the diaphragm during compression.

    Since the failure of the integrated structure always initiate at the weld spot of diaphragms, it is necessary to apply the fracture mechanics concept to predict the safety. The depth of the weld, which connects the diaphragms A and B, plays an important role in evaluating the fatigue life. The greatest stress intensity factor occurs at inner ring when tensile force is applied only. However, as the internal pressure involves, the greatest stress intensity factor may be shifted to the outer ring.

    目錄 摘要 ...................................................... Ⅰ 英文摘要 .................................................. Ⅱ 誌謝 ...................................................... Ⅲ 目錄 ...................................................... Ⅳ 表目錄 .................................................... Ⅵ 圖目錄 .................................................... Ⅶ 符號說明 .................................................. XI 第一章 緒論 ................................................ 1 § 1.1 前言 ................................................. 1 § 1.2 文獻回顧 ............................................. 2 § 1.3 研究動機與目的 ....................................... 3 § 1.4 研究方法 ............................................. 3 § 1.5 本文架構 ............................................. 3 第二章 問題描述與分析方法 .................................. 5 § 2.1 問題定義 ............................................. 5 § 2.2 基本假設 ............................................. 5 § 2.3 應力強度因子 ......................................... 7 第三章 有限元素模型 ....................................... 15 § 3.1 元素型式 .............................................15 § 3.2 幾何非線性 ............................................................15 § 3.4 有限元素模型之簡化 ...................................17 § 3.5 兩對膜片有限元素模型之準確性確認 .....................19 § 3.6 破壞力學之有限元素模型 ...............................19 第四章 分析結果與討論 ......................................27 § 4.1 波紋管圓弧之功用探討 .................................27 § 4.2 膜片圓弧參數分析 .....................................28 § 4.2.1 圓弧參數分析─內外壓差為零 .........................28 § 4.2.2 圓弧參數分析─內外壓差為零之最佳設計 ...............30 § 4.2.3 圓弧參數分析─內部1大氣壓且外部真空 ................32 § 4.2.4 圓弧參數分析—內部1大氣壓且外部真空之最佳設計 ......34 § 4.2.5 圓弧參數分析─其他內外壓差下之最佳設計 .............36 § 4.3 其他參數之影響 .......................................39 § 4.3.1 膜片厚度的影響 .....................................39 § 4.3.2 銲道熔深的影響 .....................................41 § 4.3.3 膜片中其餘參數 .....................................42 第五章 結論 ................................................69 參考文獻 ...................................................71

    [1] Design of Piping Systems. The M. W. Kellogg Company, USA (1967)
    [2] 李永生、李建國,波形膨脹節實用技術-設計、製造與應用。化學工業出版社,中國北京 (2000)
    [3] C. Becht, Fatigue of bellows, a new design approach. International Journal of Pressure Vessels and Piping, Vol. 77, No. 13, pp. 843-850 (2000)
    [4] T. Li, X. Luo and T. Li, Movement stress of bellows subjected to displacement loading of various kinds. International Journal of Pressure Vessels and Piping, Vol. 62, No. 2, pp. 171-177 (1995)
    [5] T. Li and X. Luo, Experimental research of toroid-shaped bellows behavior.International Journal of Pressure Vessels and Piping, Vol. 63, No. 2, pp. 141-146 (1995)
    [6] W. Zhu, Q. Huang and P. Guo, Complex equations of flexible circular ring shells overall-bending in a meridian plane and general solution for the slender ring shells. Applied Mathematics and Mechanics, Vol. 20, No. 9, pp. 952-959 (1999)
    [7] H. Shaikh, H. S. Khatak, R. K. Dayal and J. B. Gnanamoorthy, Failure analysis of an AM 350 steel bellows. Praktische Metallographie, Vol. 28, No. 3, pp. 143-150 (1991)
    [8] N. G. Muralidharan, R. Kaul, K. V. Kasiviswanathan and B. Raj, Failure analysis of AISI 347 bellow. Praktische Metallographie, Vol. 28, No. 12, pp. 662-668 (1991)
    [9] O. Hirata, A. Nakajima, K. Okada and T. Yanagisawa, Study on durability of welded bellows - Fatigue life of bellows with crack in welded bead. Journal of the Japan Society for Precision Engineering, Vol. 60, No. 11, pp. 1621-1625 (1994) (in Japanese)
    [10] O. Hirata, A. Nakajima, K. Okada, M. Fujii and M. Satoh, Characteristics of dissimilar-metal- welded bellows made of Ni base alloy. Transactions of the Japan Society of Mechanical Engineers, Series C, Vol. 60, No. 571, pp. 1039-1046 (1994) (in Japanese)
    [11] O. Hirata, A. Nakajima, K. Okada, S. Sasaki and Y. Ogawa, Fatigue life of welded bellows - Effect of test speed. Transactions of the Japan Society of Mechanical Engineers, Series C, Vol. 61, No. 589, pp. 3755-3761 (1995) (in Japanese)
    [12] H. Shaikh, G. George and H. S. Khatak, Failure analysis of an AM 350 steel bellows. Engineering Failure Analysis, Vol. 8, No. 6, pp. 571-576 (2000)
    [13] Y. S. An, R. L. Cai, Z. J. Qiu and Y. Zhang, Experimental study on effects of formation angle on performance of welded metal bellows. Run Hua Yu Mi
    Feng/Lubrication Engineering, No. 5, pp. 42-44 (2000) (in simplified Chinese)
    [14] Y. S. An, R. L. Cai, J. G. Yao and T. Gu, Nonlinear stress analysis on welded metal bellows of mechanical seals. Shiyou Huagong Shebei/ Petro-Chemical Equipment, Vol. 31, No. 2, pp. 4-7 (2002) (in simplified Chinese)
    [15] Y. S. An, R. L. Cai, W. D. Liu, Y. H. Tang and X. He, Study on the mechanism of elasticity loss of welded metal bellows. Run Hua Yu Mi Feng/Lubrication Engineering, No. 1, pp. 7-9 (2002) (in simplified Chinese)
    [16] Military Standardization Handbook 5E. Department of Defense, USA (1987)
    [17] I. N. Sneddon and M. Lowengrub, Crack Problem in the Classical Theory of Elasticity. Wiley, New York (1969)
    [18] R. J. Hartranft and G. C. Sih, Effect of plate thickness on the bending stress distribution around through cracks. Journal of Mathematical Physics, Vol. 47, pp. 276-291 (1968)
    [19] P. C. Paris and G. C. Sih, Stress analysis of cracks. ASTM STP, Vol. 381, pp. 30 (1965)
    [20] I. L. Lim, I. W. Johnston and S. K. Choi, Comparison between various displacement-based stress intensity factor computation techniques. International Journal of Fracture, Vol. 58, pp. 193-210 (1992)
    [21] R. S. Barsoum, On the use of isoparametric finite elements in linear fracture mechanics. International Journal for Numerical Methods in
    Engineering, Vol. 10, No. 1, pp. 25-37 (1976)
    [22] L. Banks-Sills and O. Einav, On singular, nine-noded, distorted, isoparametric elements in linear elastic fracture mechanics. Computers & Structures, Vol. 25, No. 3, pp. 445-449 (1987)
    [23] MARC User Manual Vol. A-C. MARC Analysis Research Corporation, Palo Alto, California,U.S.A. (1992).

    下載圖示 校內:立即公開
    校外:2003-06-10公開
    QR CODE