簡易檢索 / 詳目顯示

研究生: 邱穫升
Chiou, Huo-Sheng
論文名稱: 以X光小角度散射技術探討化膿性鏈球菌氧化壓力調控因子PerR在溶液中之構形
Structural Studies of the Streptococcus pyogenes PerR by Solution Small-Angle X-ray Scattering
指導教授: 王淑鶯
Wang, Shu-Ying
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 89
中文關鍵詞: 化膿性鏈球菌氧化壓力peroxide response regulatorPerR小角度X光散射Dpr
外文關鍵詞: streptococcus pyogenes, GAS, small angle X-ray scattering, SAXS, PerR, metalloprotein, peroxide response regulator, ROS stress, Dpr
相關次數: 點閱:113下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 化膿性鏈球菌 (Streptococcus pyogenes) 是感染人類的重要病原菌,其感染時可在含氧量充足的宿主環境進一步導致侵入性及高危險的疾病發生,如壞死性筋膜炎 (Necrotizing Fasciitis)、鏈球菌中毒性休克綜合症(Streptococcal Toxic Shock Syndrome)。在臨床檢驗及早期研究上皆指出了,不具有‎過氧化氫酶 (catalase) 的S. pyogenes確有抵禦由reactive oxygen species (ROS) 所衍生氧化壓力 (Oxidative stress) 的能力,使其得以存活於高氧化壓力的環境中。另外,在動物感染模式研究下亦證明了,氧化壓力與細胞內外金屬離子的恆定對於S. pyogenes的毒力因子表現及致病機轉有著關鍵性影響。故充分了解不具過氧化氫酶的S. pyogenes如何在感染過程中調控氧化壓力平衡而維持自身生長是一個有趣的研究方向。本篇主要以小角度X-ray散射技術 (Small-Angle X-ray Scattering) 探討氧化壓力調控因子PerR在溶液中的構形,進而了解其分子調控機制。PerR是一種需金屬離子協助的轉錄調控因子,有研究證明了在過度金屬離子和hydrogen peroxide stress的環境下,PerR可以直接調控Dpr蛋白的表現,來幫助S. pyogenes抵禦氧化壓力,故可透過Dpr promoter region來觀測PerR結合DNA的能力。在實驗室先前研究中我們確認了S. pyogenes PerR在溶液中具有結合DNA的能力且成功的解構了S. pyogenes PerR,但比較目前研究較深入的B. subtilis PerR後,我們發現S. pyogenes PerR與B. subtilis PerR在inactive狀態下的結構相似,為了釐清是否在結晶過程中造成了這個矛盾,我們利用了小角度X-ray散射技術,透過這項技術可以探知蛋白質在溶液狀態下的構形。從小角度X-ray散射的結果指出,S. pyogenes PerR的晶體結構和溶液中的構形是一致的,進一步證明了先前晶體結構下的S. pyogenes PerR具有結合DNA的能力。另一方面,我們也發現在後續由M9 medium表現出的S. pyogenes PerR在溶液下不具有結合DNA的能力,但當環境存在鋅離子時,S. pyogenes PerR可以恢復其DNA結合能力。綜合上述實驗結果,我們相信S. pyogenes PerR擁有和B. subtilis PerR一樣的活化模式,需要藉由結合金屬離子來活化其結合DNA的能力,而由M9 medium表現出的S. pyogenes PerR為inactive的狀態,當結合環境金屬離子後,會產生構形轉變而成為active的狀態。

    Streptococcus pyogenes is a strictly human pathogen that causes severe and invasive diseases in oxygen-rich host environment. However, previous studies indicate S. pyogenes does not produce catalase but has a robust ability to resist killing by reactive oxygen species (ROS). Also, the survival and virulence of S. pyogenes correlates with the regulation of oxidative stress and metal homeostasis. Therefore, how S. pyogenes adapts to ROS stress during infection is an interesting question. The peroxide response regulator, PerR, is a metal-binding transcriptional regulator that controls gene expression of GAS for fighting multiple stresses. Dpr, an iron-binding protein, which is required for oxygen tolerance for S. pyogenes, is known to be repressed by PerR. Studies have shown that the expression of Dpr is induced by millimolar levels of zinc, nickel, or hydrogen peroxide. Aim to understand the molecular mechanism of how PerR regulates the expression of Dpr, the crystal structure of PerR has been solved in this lab. The structure reveals that PerR is a homodimer and coordinates a zinc atom at regulatory site of each monomer. In contrast with Bacillus subtilis PerR, the crystal structure of S. pyogenes PerR is similar to the inactive conformation of the B. subtilis PerR that does not possess DNA-binding ability. However, the PerR protein is active in solution tested by electrophoretic mobility shift assay. For the purpose of clarifying the effect of crystallization process causes this contradiction. We performed the small angle X-ray scattering (SAXS) to understand the solution conformation of PerR. SAXS has become an increasingly important technique and is widely used to study the low-resolution structure of biological macromolecules in solution. Surprisingly, the model of SAXS suggests the conformation of crystal structure is identical with that in solution. Preliminary of S. pyogenes PerR expressed for M9 medium indicates an inactive form. And the DNA-binding ability is rescued by addition of excess zinc ions. Taken together, we got an active conformation of S. pyogenes PerR which was able to recognize its specific DNA binding region. Following the mode of Fur protein, we speculate that S. pyogenes PerR is able to sense the excess metal ions from environment and act as a repressor dependent on conformational change.

    中文摘要 .............................................. III ABSTRACT ............................................. IV 致謝 .................................................. VI CONTENTS ............................................. VII FIGURE LIST .......................................... X APPENDIX LIST ........................................ XI ABBREVIATION ......................................... XII CHAPTER 1 ............................................ 1 INTRODUCTION ......................................... 1 1.1 Introduction of Streptococcus pyogenes ........... 1 1.2 Epidemiology of Streptococcus pyogenes ........... 2 1.3 Pathogenesis of invasive streptococcal diseases .. 3 1.3.1 Necrotizing fasciitis ......................... 3 1.3.2 Streptococcal toxic shock syndrome ............ 5 1.4 Therapeutic strategies of streptococcal disease .. 6 1.5 Antibiotic resistance of streptococcal disease ... 6 1.6 Characterization of peroxide regulon repressor ... 7 1.7 Cellular defense mechanism against reactive oxygen species ................................... 7 1.8 Fur family metalloregulators ..................... 10 1.8.1 The OxyR regulon in E.coli .................... 12 1.8.2 The PerR regulon in Bacillus subtilis ......... 13 1.9 Characterization of S. pyogenes PerR and its role involved in pathogenesis ................ 16 1.10 The aim of this study ........................... 17 CHAPTER 2 ............................................ 19 MATERIALS AND METHODS ................................ 19 2.1 Materials ........................................ 19 2.1.1 Competent cells ............................... 19 2.1.2 Primers ....................................... 19 2.1.3 Plasmids ...................................... 20 2.1.4 Chemicals and enzymes ......................... 20 2.1.5 Mediums and Reaction systems .................. 22 2.1.6 Buffers ....................................... 23 2.1.6.1 Buffer system of Ni2+-NTA affinity chromatography ............................. 23 2.1.6.2 Buffer for PerR concentration .............. 24 2.1.6.3 Buffers for size-exclusion chromatography .. 24 2.1.6.4 Preparation of sodium dodecyl sulfate- polyacrylamide gel electrophoresis analysis. 25 2.1.6.5 Preparation of electrophoretic mobility shift assay ................................ 26 2.1.6.6 Buffer system of ion exchange chromatography ............................. 28 2.1.6.7 Buffer system of S. pyogenes PerR_M9 concentration .............................. 28 2.1.6.8 Cryo-protectant solution of S. pyogenes PerR crystals ................................... 28 2.1.7 Kits .......................................... 29 2.1.8 Instruments ................................... 29 2.2 Methods .......................................... 30 2.2.1 Reconstruction of S. pyogenes PerR ............ 30 2.2.2 Transformation of S. pyogenes PerR plasmids ... 30 2.2.3 Induction of S. pyogenes PerR ................. 31 2.2.4 Purification of S. pyogenes PerR .............. 31 2.2.5 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis ...................... 32 2.2.6 Electrophoretic mobility shift assay .......... 32 2.2.6.1 Preparation of dpr promoter DNA ............ 32 2.2.6.2 Mobility shift assay ....................... 33 2.2.7 Crystallization of S. pyogenes PerR ........... 33 2.2.8 X-ray data collection of S. pyogenes PerR ..... 34 2.2.9 Introduction of small angle x-ray scattering .. 34 2.2.9.1 Principles of small angle x-ray scattering . 34 2.2.9.2 SAXS data analysis and process by ATSAS .... 38 2.2.10 Sample preparation of S. pyogenes PerR for small-angle x-ray scattering ................ 40 2.2.11 SAXS data collection of S. pyogenes PerR ..... 41 2.2.12 SAXS data analysis and processing of S. pyogenes PerR ......................................... 41 2.2.13 Induction of S. pyogenes in M9 medium ........ 42 2.2.14 Purification of S. pyogenes from M9 medium ... 43 2.2.15 Mobility shift assay of S. pyogenes PerR_M9 .. 43 CHAPTER 3 ............................................ 45 RESULTS .............................................. 45 3.1 Reconstruct of S. pyogenes PerR .................. 45 3.2 Characterization and purification of S. pyogenes PerR ............................................. 45 3.3 S. pyogenes PerR purified has DNA binding ability in solution. ........................................ 46 3.4 Crystallization and data collection of S. pyogenes PerR from LB medium .............................. 46 3.5 SAXS data collection of S. pyogenes PerR ......... 47 3.6 Rigid body refinement of SAXS data ............... 48 3.7 Expression and purification of S. pyogenes PerR from M9 medium ........................................ 48 3.8 S. pyogenes PerR_M9 loses DNA binding ability in solution ......................................... 49 3.9 The DNA-binding ability of S. pyogenes PerR_M9 is activated by addition of zinc ions ............... 49 CHAPTER 4 ............................................ 50 DISCUSSION............................................ 50 4.1 Interaction between active S. pyogenes PerR and DNA .............................................. 50 4.2 Metal ions selectivity of S. pyogenes PerR ....... 52 4.3 Inactivation of S. pyogenes PerR by hydrogen peroxide ......................................... 53 4.4 Global regulation of S. pyogenes PerR ............ 53 CHAPTER 5 ............................................ 55 CONCLUSION ........................................... 55 FIGURES .............................................. 56 REFERENCES ........................................... 74 APPENDIX ............................................. 85 FIGURE LIST Figure 1.1 Proposed models for pathogenesis of STSS .. 56 Figure 1.2 Reactive oxygen species production and ROS -mediated disruption of cellular homeostasis ......... 57 Figure 1.3 ROS sources and their biochemical properties ........................................... 57 Figure 1.4 Crystal structure of P. aeruginosa Fur .... 58 Figure 1.5 Crystal structure of active B. subtilis PerR ...................................... 59 Figure 1.6 Crystal structure of inactive B. subtilis PerR ...................................... 60 Figure 1.7 Structural models of oxidized B. subtilis PerR and molecular mechanism of B. subtilis PerR regulation ................................ 61 Figure 1.8 Crystal structure of S. pyogenes PerR ..... 62 Figure 1.9 Superposition of S. pyogenes and B. subtilis PerR ...................................... 63 Figure 3.1 Protein sequence of S. pyogenes PerR ...... 64 Figure 3.2 S. pyogenes PerR expressed in E. coil BL21(DE3) from LB medium ............................ 64 Figure 3.3 Purification of S. pyogenes PerR from LB medium by Ni2+-NTA chromatography and size-exclusion chromatography ............................ 65 Figure 3.4 Mobility shift analysis of purified S. pyogenes PerR from LB medium on Dpr promoter ....... 66 Figure 3.5 Crystal of S. pyogenes PerR grown from optimized crystallization condition ....... 67 Figure 3.6 Scattering curves of S. pyogenes PerR ..... 67 Figure 3.7 Guinier plot and pair-distribution function of S. pyogenes PerR .......................... 68 Figure 3.8 Crystallographic and SAXS models of S. pyogenes PerR ...................................... 69 Figure 3.9 Comparison of SAXS scattering curves with theoretical curve calculated from crystal structure by program CRYSOL ............... 70 Figure 3.10 S. pyogenes PerR_M9 expressed from M9 medium ................................... 70 Figure 3.11 Purification of S. pyogenes PerR_M9 from M9 medium by anion exchange chromatography and size-exclusion chromatography ............ 71 Figure 3.12 The DNA-binding ability of S. pyogenes PerR_M9 from M9 medium analysis by EMSA .......... 72 Figure 4.1 Superposition of DNA recognized region of S. aureus BlaI and S. pyogenes PerR ....... 72 Figure 5.1 Proposed structural model of S. pyogenes PerR ...................................... 73 APPENDIX LIST Appendix 3.1: Mobility shift of dissolved S. pyogenes PerR crystals ............................... 85 Appendix 3.2: Different Crystals between S. pyogenes PerR ................................... 85 Appendix 3.3: Data collection of X-ray diffraction between S. pyogenes PerR expressed from plasmid pSPerR and pMW540 ...................... 86 Appendix 4.1: DNA sequence alignment of S. pyogenes PerR in different strains ................... 86 Appendix 4.2: Alignment of PerR homologs ............. 87 Appendix 4.3: Amino sequence alignment of S. pyogenes and B. subtilis PerR ....................... 87 Appendix 4.4: Induction of S. pyogenes PerR_M9 ....... 88

    1. Altuvia, S., Almiron, M., Huisman, G., Kolter, R., and
    Storz, G. (1994). The dps promoter is activated by OxyR
    during growth and by IHF and sigma S in stationary
    phase. Mol Microbiol 13, 265-272.

    2. Altuvia, S., Weinstein-Fischer, D., Zhang, A., Postow,
    L., and Storz, G. (1997). A small, stable RNA induced
    by oxidative stress: role as a pleiotropic regulator
    and antimutator. Cell 90, 43-53.

    3. Anjem, A., Varghese, S., and Imlay, J.A. (2009).
    Manganese import is a key element of the OxyR response
    to hydrogen peroxide in Escherichia coli. Mol Microbiol
    72, 844-858. Epub 2009 Apr 2021.

    4. Ardanuy, C., Domenech, A., Rolo, D., Calatayud, L.,
    Tubau, F., Ayats, J., Martin, R., and Linares, J.
    (2010). Molecular characterization of macrolide- and
    multidrug-resistant Streptococcus pyogenes isolated
    from adult patients in Barcelona, Spain (1993-2008). J
    Antimicrob Chemother 65, 634-643.

    5. Ashbaugh, C.D., Warren, H.B., Carey, V.J., and Wessels,
    M.R. (1998). Molecular analysis of the role of the
    group A streptococcal cysteine protease, hyaluronic
    acid capsule, and M protein in a murine model of human
    invasive soft-tissue infection. J Clin Invest 102, 550-
    560.

    6. Aslund, F., Zheng, M., Beckwith, J., and Storz, G.
    (1999). Regulation of the OxyR transcription factor by
    hydrogen peroxide and the cellular thiol-disulfide
    status. Proc Natl Acad Sci U S A 96, 6161-6165.

    7. Bagg, A., and Neilands, J.B. (1987). Ferric uptake
    regulation protein acts as a repressor, employing iron
    (II) as a cofactor to bind the operator of an iron
    transport operon in Escherichia coli. Biochemistry
    26, 5471-5477.

    8. Beall, B., Facklam, R., Hoenes, T., and Schwartz, B.
    (1997). Survey of emm gene sequences and T-antigen
    types from systemic Streptococcus pyogenes infection
    isolates collected in San Francisco, California;
    Atlanta, Georgia; and Connecticut in 1994 and 1995. J
    Clin Microbiol 35, 1231-1235.

    9. Beall, B., Facklam, R., and Thompson, T. (1996).
    Sequencing emm-specific PCR products for routine and
    accurate typing of group A streptococci. J Clin
    Microbiol 34, 953-958.

    10.Beres, S.B., Sylva, G.L., Barbian, K.D., Lei, B., Hoff,
    J.S., Mammarella, N.D., Liu, M.Y., Smoot, J.C.,
    Porcella, S.F., Parkins, L.D., et al. (2002). Genome
    sequence of a serotype M3 strain of group A
    Streptococcus: phage-encoded toxins, the high-virulence
    phenotype, and clone emergence. Proc Natl Acad Sci U S
    A 99, 10078-10083. Epub 12002 Jul 10016.

    11.Berlett, B.S., Chock, P.B., Yim, M.B., and Stadtman,
    E.R. (1990). Manganese(II) catalyzes the
    bicarbonate-dependent oxidation of amino acids by
    hydrogen peroxide and the amino acid-facilitated
    dismutation of hydrogen peroxide. Proc Natl Acad Sci U
    S A 87, 389-393.

    12.Brenot, A., King, K.Y., and Caparon, M.G. (2005). The
    PerR regulon in peroxide resistance and virulence of
    Streptococcus pyogenes. Mol Microbiol 55, 221-234.

    13.Brenot, A., Weston, B.F., and Caparon, M.G. (2007). A
    PerR-regulated metal transporter(PmtA) is an interface
    between oxidative stress and metal homeostasis in
    Streptococcus pyogenes. Mol Microbiol 63, 1185-1196.

    14.Brosnahan, A.J., Mantz, M.J., Squier, C.A., Peterson,
    M.L., and Schlievert, P.M. (2009). Cytolysins augment
    superantigen penetration of stratified mucosa. J
    Immunol 182, 2364-2373.

    15.Bsat, N., Chen, L., and Helmann, J.D. (1996). Mutation
    of the Bacillus subtilis alkyl hydroperoxide reductase
    (ahpCF) operon reveals compensatory interactions among
    hydrogen peroxide stress genes. J Bacteriol 178, 6579-
    6586.

    16.Bsat, N., and Helmann, J.D. (1999). Interaction of
    Bacillus subtilis Fur (ferric uptake repressor)
    with the dhb operator in vitro and in vivo. J Bacteriol
    181, 4299-4307.

    17.Burns, E.H., Jr., Marciel, A.M., and Musser, J.M.
    (1996). Activation of a 66-kilodalton human
    endothelial cell matrix metalloprotease by
    Streptococcus pyogenes extracellular cysteine
    protease. Infect Immun 64, 4744-4750.


    18.Carapetis, J.R., Steer, A.C., Mulholland, E.K., and
    Weber, M. (2005). The global burden of group A
    streptococcal diseases. Lancet Infect Dis 5, 685-694.

    19.Chang, H., Shen, X., Fu, Z., Liu, L., Shen, Y., Liu,
    X., Yu, S., Yao, K., Zhao, C., and Yang, Y.
    (2010). Antibiotic resistance and molecular analysis of
    Streptococcus pyogenes isolated from healthy
    schoolchildren in China. Scand J Infect Dis 42, 84-89.

    20.Chao, S.-Y. (2010). Structural studies of the stress
    response regulator PerR from
    Streptococcus pyogenes. In Department of Microbiology
    and Immunology,National Cheng Kung University, Tainan,
    Taiwan

    21.Chen, L., and Helmann, J.D. (1995). Bacillus subtilis
    MrgA is a Dps(PexB) homologue: evidence for
    metalloregulation of an oxidative-stress gene. Mol
    Microbiol 18, 295-300.

    22.Chen, L., James, L.P., and Helmann, J.D. (1993).
    Metalloregulation in Bacillus subtilis: isolation and
    characterization of two genes differentially repressed
    by metal ions. J Bacteriol 175, 5428-5437.

    23.Chen, L., Keramati, L., and Helmann, J.D. (1995).
    Coordinate regulation of Bacillus subtilis
    peroxide stress genes by hydrogen peroxide and metal
    ions. Proc Natl Acad Sci U S A 92, 8190-8194.

    24.Chen, Z., Lewis, K.A., Shultzaberger, R.K., Lyakhov,
    I.G., Zheng, M., Doan, B., Storz, G., and Schneider,
    T.D. (2007). Discovery of Fur binding site clusters in
    Escherichia coli by information theory models. Nucleic
    Acids Res 35, 6762-6777.

    25.Christman, M.F., Morgan, R.W., Jacobson, F.S., and
    Ames, B.N. (1985). Positive control of a regulon for
    defenses against oxidative stress and some heat-shock
    proteins in Salmonella typhimurium. Cell 41, 753-762.

    26.Clancy, J., Petitpas, J., Dib-Hajj, F., Yuan, W.,
    Cronan, M., Kamath, A.V., Bergeron, J., and
    Retsema, J.A. (1996). Molecular cloning and functional
    analysis of a novel macrolide-resistance determinant,
    mefA, from Streptococcus pyogenes. Mol Microbiol 22,
    867-879.

    27.Cleary, P.P., Prahbu, U., Dale, J.B., Wexler, D.E., and
    Handley, J. (1992). Streptococcal C5a peptidase is a
    highly specific endopeptidase. Infect Immun 60, 5219-
    5223.

    28.Cone, L.A., Stone, R.A., Schlievert, P.M., Sneider,
    R.A., Rubin, A.M., Jesser, K., and Renker, S.W. (2006).
    An early favorable outcome of streptococcal toxic shock
    syndrome may require a combination of antimicrobial and
    intravenous gamma globulin therapy together with
    activated protein C. Scand J Infect Dis 38, 960-963.

    29.Cunningham, L., Gruer, M.J., and Guest, J.R. (1997).
    Transcriptional regulation of the aconitase genes (acnA
    and acnB) of Escherichia coli. Microbiology 143, 3795-
    3805.

    30.D'Autreaux, B., and Toledano, M.B. (2007). ROS as
    signalling molecules: mechanisms that generate
    specificity in ROS homeostasis. Nat Rev Mol Cell Biol
    8, 813-824.

    31.D'Autreaux, B., Touati, D., Bersch, B., Latour, J.M.,
    and Michaud-Soret, I. (2002). Direct inhibition by
    nitric oxide of the transcriptional ferric uptake
    regulation protein via nitrosylation of the iron. Proc
    Natl Acad Sci U S A 99, 16619-16624.

    32.Delany, I., Rappuoli, R., and Scarlato, V. (2004). Fur
    functions as an activator and as a repressor of
    putative virulence genes in Neisseria meningitidis. Mol
    Microbiol 52, 1081-1090.

    33.Delany, I., Spohn, G., Rappuoli, R., and Scarlato, V.
    (2001). The Fur repressor controls transcription of iron-
    activated and -repressed genes in Helicobacter pylori.
    Mol Microbiol 42, 1297-1309.

    34.Dintilhac, A., Alloing, G., Granadel, C., and Claverys,
    J.P. (1997). Competence and virulence of Streptococcus
    pneumoniae: Adc and PsaA mutants exhibit a requirement
    for Zn and Mn resulting from inactivation of putative
    ABC metal permeases. Mol Microbiol 25, 727-739.

    35.Duarte, V., and Latour, J.M. (2010). PerR vs OhrR:
    selective peroxide sensing in Bacillus subtilis. Mol
    Biosyst 6, 316-323.

    36.Facklam, R., Beall, B., Efstratiou, A., Fischetti, V.,
    Johnson, D., Kaplan, E., Kriz, P., Lovgren, M., Martin,
    D., Schwartz, B., et al. (1999). emm typing and
    validation of provisional M types for group A
    streptococci. Emerg Infect Dis 5, 247-253.

    37.Faulkner, M.J., and Helmann, J.D. (2011). Peroxide
    stress elicits adaptive changes in bacterial
    metal ion homeostasis. Antioxid Redox Signal 15, 175-
    189. Epub 2011 Apr 2010.

    38.Ferretti, J.J., McShan, W.M., Ajdic, D., Savic, D.J.,
    Savic, G., Lyon, K., Primeaux, C., Sezate, S., Suvorov,
    A.N., Kenton, S., et al. (2001). Complete genome
    sequence of an M1 strain of Streptococcus pyogenes.
    Proc Natl Acad Sci U S A 98, 4658-4663.

    39.Friedman, Y.E., and O'Brian, M.R. (2004). The ferric
    uptake regulator (Fur) protein from Bradyrhizobium
    japonicum is an iron-responsive transcriptional
    repressor in vitro. J Biol Chem 279, 32100-32105.

    40.Fuangthong, M., Herbig, A.F., Bsat, N., and Helmann,
    J.D. (2002). Regulation of the Bacillus subtilis fur
    and perR genes by PerR: not all members of the PerR
    regulon are peroxide inducible. J Bacteriol 184, 3276-
    3286.

    41.Gaballa, A., and Helmann, J.D. (2002). A peroxide-
    induced zinc uptake system plays an important role in
    protection against oxidative stress in Bacillus
    subtilis. Mol Microbiol 45, 997-1005.

    42.Giedroc, D.P. (2009). Hydrogen peroxide sensing in
    Bacillus subtilis: it is all about the (metallo)
    regulator. Mol Microbiol 73, 1-4.

    43.Greenberg, J.T., and Demple, B. (1988). Overproduction
    of peroxide-scavenging enzymes in Escherichia coli
    suppresses spontaneous mutagenesis and sensitivity to
    redox-cycling agents in oxyR-mutants. Embo J 7, 2611-
    2617.

    44.Gryllos, I., Grifantini, R., Colaprico, A., Cary, M.E.,
    Hakansson, A., Carey, D.W., Suarez-Chavez, M., Kalish,
    L.A., Mitchell, P.D., White, G.L., et al. (2008). PerR
    confers phagocytic killing resistance and allows
    pharyngeal colonization by group A Streptococcus.
    PLoS Pathog 4, e1000145.

    45.Guinier, A. (1938). The diffusion of x-rays under the
    extremely weak angles applied to the study of fine
    particles and colloidal suspension. C R Hebd Seances
    Acad Sci 206, 1374–1376.

    46.Hantke, K. (1981). Regulation of ferric iron transport
    in Escherichia coli K12: isolation of a
    constitutive mutant. Mol Gen Genet 182, 288-292.

    47.Herr, M., Grabein, B., Palm, H.G., Efinger, K.,
    Riesner, H.J., Friemert, B., and Willy, C. (2011).
    [Necrotizing fasciitis. 2011 update]. Unfallchirurg
    114, 197-216.

    48.Hollingshead, S.K., Simecka, J.W., and Michalek, S.M.
    (1993). Role of M protein in pharyngeal colonization by
    group A streptococci in rats. Infect Immun 61, 2277-
    2283.

    49.Horsburgh, M.J., Wharton, S.J., Cox, A.G., Ingham, E.,
    Peacock, S., and Foster, S.J. (2002). MntR modulates
    expression of the PerR regulon and superoxide
    resistance in Staphylococcus aureus through control of
    manganese uptake. Mol Microbiol 44, 1269-1286.

    50.Hytonen, J., Haataja, S., Gerlach, D., Podbielski, A.,
    and Finne, J. (2001). The SpeB virulence
    factor of Streptococcus pyogenes, a multifunctional
    secreted and cell surface molecule with
    strepadhesin, laminin-binding and cysteine protease
    activity. Mol Microbiol 39, 512-519.

    51.Imlay, J.A. (2003). Pathways of oxidative damage. Annu
    Rev Microbiol 57, 395-418.

    52.Imlay, J.A. (2008). Cellular defenses against
    superoxide and hydrogen peroxide. Annu Rev Biochem 77,
    755-776.

    53.Jacquamet, L., Traore, D.A., Ferrer, J.L., Proux, O.,
    Testemale, D., Hazemann, J.L., Nazarenko, E., El
    Ghazouani, A., Caux-Thang, C., Duarte, V., et al.
    (2009). Structural characterization of the active form
    of PerR: insights into the metal-induced activation of
    PerR and Fur proteins for DNA binding. Mol Microbiol
    73, 20-31. Epub 2009 Jun 2008.

    54.Jacques, D.A., and Trewhella, J. (2010). Small-angle
    scattering for structural biology--expanding the
    frontier while avoiding the pitfalls. Protein Sci 19,
    642-657.

    55.Janulczyk, R., Ricci, S., and Bjorck, L. (2003). MtsABC
    is important for manganese and iron transport,
    oxidative stress resistance, and virulence of
    Streptococcus pyogenes. Infect Immun
    71, 2656-2664.

    56.Johansson, L., Thulin, P., Low, D.E., and Norrby-
    Teglund, A. (2010). Getting under the skin:
    the immunopathogenesis of Streptococcus pyogenes deep
    tissue infections. Clin Infect Dis 51, 58-65.

    57.Johnson, D.R., and Kaplan, E.L. (1993). A review of the
    correlation of T-agglutination patterns
    and M-protein typing and opacity factor production in
    the identification of group A streptococci.
    J Med Microbiol 38, 311-315.

    58.Kapur, V., Topouzis, S., Majesky, M.W., Li, L.L.,
    Hamrick, M.R., Hamill, R.J., Patti, J.M., and
    Musser, J.M. (1993). A conserved Streptococcus pyogenes
    extracellular cysteine protease cleaves human
    fibronectin and degrades vitronectin. Microb Pathog 15,
    327-346.

    59.Kaul, R., McGeer, A., Low, D.E., Green, K., and
    Schwartz, B. (1997). Population-based surveillance for
    group A streptococcal necrotizing fasciitis: Clinical
    features, prognostic indicators, and microbiologic
    analysis of seventy-seven cases. Ontario Group A
    Streptococcal Study. Am J Med 103, 18-24.

    60.Kehres, D.G., Zaharik, M.L., Finlay, B.B., and Maguire,
    M.E. (2000). The NRAMP proteins of Salmonella
    typhimurium and Escherichia coli are selective
    manganese transporters involved in the response to
    reactive oxygen. Mol Microbiol 36, 1085-1100.

    61.King, K.Y., Horenstein, J.A., and Caparon, M.G. (2000).
    Aerotolerance and peroxide resistance in peroxidase and
    PerR mutants of Streptococcus pyogenes. J Bacteriol
    182, 5290-5299.

    62.Kliegman, J.I., Griner, S.L., Helmann, J.D., Brennan,
    R.G., and Glasfeld, A. (2006). Structural basis for the
    metal-selective activation of the manganese transport
    regulator of Bacillus subtilis.
    Biochemistry 45, 3493-3505.

    63.Kotb, M., Norrby-Teglund, A., McGeer, A., El-Sherbini,
    H., Dorak, M.T., Khurshid, A., Green, K.,
    Peeples, J., Wade, J., Thomson, G., et al. (2002). An
    immunogenetic and molecular basis for differences in
    outcomes of invasive group A streptococcal infections.
    Nat Med 8, 1398-1404. Epub 2002 Nov 1318.

    64.Kozin, M.B., and Svergun, D.I. Automated matching of
    high- and low-resolution structural models.

    65.Lamagni, T.L., Efstratiou, A., Vuopio-Varkila, J.,
    Jasir, A., and Schalen, C. (2005). The
    epidemiology of severe Streptococcus pyogenes
    associated disease in Europe. Euro Surveill
    10, 179-184.

    66.Lancefield, R.C. (1928). THE ANTIGENIC COMPLEX OF
    STREPTOCOCCUS HAEMOLYTICUS : V. ANAPHYLAXIS WITH THE
    TYPE-SPECIFIC SUBSTANCE. J Exp Med 47, 857-875.

    67.Lancefield, R.C. (1962). Current knowledge of type-
    specific M antigens of group A streptococci.
    J Immunol 89, 307-313.

    68.Lee, J.W., and Helmann, J.D. (2006). The PerR
    transcription factor senses H2O2 by
    metal-catalysed histidine oxidation. Nature 440, 363-
    367.

    69.Lee, J.W., and Helmann, J.D. (2007). Functional
    specialization within the Fur family of
    metalloregulators. Biometals 20, 485-499.

    70.Lewin, A.C., Doughty, P.A., Flegg, L., Moore, G.R., and
    Spiro, S. (2002). The ferric uptake regulator of
    Pseudomonas aeruginosa has no essential cysteine
    residues and does not contain a structural zinc ion.
    Microbiology 148, 2449-2456.

    71.Li, J.M., Su, Y.L., Gao, X.L., He, J., Liu, S.S., and
    Wang, X.W. (2011). Molecular characterization and
    oxidative stress response of an intracellular Cu/Zn
    superoxide dismutase (CuZnSOD) of the whitefly, Bemisia
    tabaci. Arch Insect Biochem Physiol 3, 20428.

    72.Ligeza, A., Tikhonov, A.N., Hyde, J.S., and Subczynski,
    W.K. (1998). Oxygen permeability of thylakoid
    membranes: electron paramagnetic resonance spin
    labeling study. Biochim Biophys Acta 1365, 453-463.

    73.Liochev, S.I., and Fridovich, I. (1992). Fumarase C,
    the stable fumarase of Escherichia coli, is
    controlled by the soxRS regulon. Proc Natl Acad Sci U S
    A 89, 5892-5896.

    74.Luca-Harari, B., Darenberg, J., Neal, S., Siljander,
    T., Strakova, L., Tanna, A., Creti, R., Ekelund, K.,
    Koliou, M., Tassios, P.T., et al. (2009). Clinical and
    microbiological characteristics of severe Streptococcus
    pyogenes disease in Europe. J Clin Microbiol 47, 1155-
    1165. Epub 2009 Jan 1121.

    75.Lynskey, N.N., Lawrenson, R.A., and Sriskandan, S.
    (2011). New understandings in Streptococcus pyogenes.
    Curr Opin Infect Dis 24, 196-202.

    76.Ma, Z., Lee, J.W., and Helmann, J.D. (2011).
    Identification of altered function alleles that affect
    Bacillus subtilis PerR metal ion selectivity. Nucleic
    Acids Res.

    77.Masse, E., and Gottesman, S. (2002). A small RNA
    regulates the expression of genes involved
    in iron metabolism in Escherichia coli. Proc Natl Acad
    Sci U S A 99, 4620-4625.

    78.Meisal, R., Andreasson, I.K., Hoiby, E.A., Aaberge,
    I.S., Michaelsen, T.E., and Caugant, D.A.
    (2010). Streptococcus pyogenes isolates causing severe
    infections in Norway in 2006 to 2007: emm types,
    multilocus sequence types, and superantigen profiles. J
    Clin Microbiol 48, 842-851. Epub 2009 Dec 2030.

    79.Moore, C.M., and Helmann, J.D. (2005). Metal ion
    homeostasis in Bacillus subtilis. Curr Opin
    Microbiol 8, 188-195.

    80.Morantes, M.C., and Lipsky, B.A. (1995). "Flesh-eating
    bacteria": return of an old nemesis. Int
    J Dermatol 34, 461-463.

    81.Mostertz, J., Scharf, C., Hecker, M., and Homuth, G.
    (2004). Transcriptome and proteome analysis of Bacillus
    subtilis gene expression in response to superoxide and
    peroxide stress. Microbiology 150, 497-512.

    82.O'Loughlin, R.E., Roberson, A., Cieslak, P.R.,
    Lynfield, R., Gershman, K., Craig, A., Albanese,
    B.A., Farley, M.M., Barrett, N.L., Spina, N.L., et al.
    (2007). The epidemiology of invasive group A
    streptococcal infection and potential vaccine
    implications: United States, 2000-2004. Clin
    Infect Dis 45, 853-862. Epub 2007 Aug 2029.

    83.Olsen, R.J., Sitkiewicz, I., Ayeras, A.A., Gonulal,
    V.E., Cantu, C., Beres, S.B., Green, N.M., Lei,
    B., Humbird, T., Greaver, J., et al. (2010). Decreased
    necrotizing fasciitis capacity caused by a single
    nucleotide mutation that alters a multiple gene
    virulence axis. Proc Natl Acad Sci U S A
    107, 888-893. Epub 2010 Jan 2014.

    84.Outten, F.W., Djaman, O., and Storz, G. (2004). A suf
    operon requirement for Fe-S cluster assembly during
    iron starvation in Escherichia coli. Mol Microbiol 52,
    861-872.

    85.P. V. Konarev, M.V.P.V.V.V., and Svergun, D.I. ATSAS
    2.1, a program package for small-angle
    scattering data analysis.

    86.Passali, D., Lauriello, M., Passali, G.C., Passali,
    F.M., and Bellussi, L. (2007). Group A
    streptococcus and its antibiotic resistance. Acta
    Otorhinolaryngol Ital 27, 27-32.

    87.Pohl, E., Haller, J.C., Mijovilovich, A., Meyer-
    Klaucke, W., Garman, E., and Vasil, M.L. (2003).
    Architecture of a protein central to iron homeostasis:
    crystal structure and spectroscopic analysis of the
    ferric uptake regulator. Mol Microbiol 47, 903-915.

    88.Powell, S.R. (2000). The antioxidant properties of
    zinc. J Nutr 130, 1447S-1454S.

    89.Rada, B., and Leto, T.L. (2008). Oxidative innate
    immune defenses by Nox/Duox family NADPH oxidases.
    Contrib Microbiol 15, 164-187.

    90.Ricci, S., Janulczyk, R., and Bjorck, L. (2002). The
    regulator PerR is involved in oxidative stress response
    and iron homeostasis and is necessary for full
    virulence of Streptococcus pyogenes. Infect Immun 70,
    4968-4976.

    91.Rizzo, A.M., Berselli, P., Zava, S., Montorfano, G.,
    Negroni, M., Corsetto, P., and Berra, B. (2011).
    Endogenous Antioxidants and Radical Scavengers. Adv Exp
    Med Biol 698, 52-67.

    92.Safo, M.K., Zhao, Q., Ko, T.P., Musayev, F.N.,
    Robinson, H., Scarsdale, N., Wang, A.H., and
    Archer, G.L. (2005). Crystal structures of the BlaI
    repressor from Staphylococcus aureus and

    93.its complex with DNA: insights into transcriptional
    regulation of the bla and mec operons. J Bacteriol 187,
    1833-1844.

    94.Schöneich, C. (2000). Mechanisms of metal-catalyzed
    oxidation of histidine to 2-oxo-histidine in peptides
    and proteins. Journal of Pharmaceutical and Biomedical
    Analysis 21, 1093-1097.

    95.Shelburne, S.A., 3rd, Keith, D., Horstmann, N., Sumby,
    P., Davenport, M.T., Graviss, E.A., Brennan, R.G., and
    Musser, J.M. (2008). A direct link between carbohydrate
    utilization and virulence in the major human pathogen
    group A Streptococcus. Proc Natl Acad Sci U S A 105,
    1698-1703. Epub 2008 Jan 1629.

    96.Shulman, S.T., Tanz, R.R., Dale, J.B., Beall, B.,
    Kabat, W., Kabat, K., Cederlund, E., Patel, D.,
    Rippe, J., Li, Z., et al. (2009). Seven-year
    surveillance of north american pediatric group a
    streptococcal pharyngitis isolates. Clin Infect Dis 49,
    78-84.

    97.Sitkiewicz, I., Nagiec, M.J., Sumby, P., Butler, S.D.,
    Cywes-Bentley, C., and Musser, J.M. (2006). Emergence
    of a bacterial clone with enhanced virulence by
    acquisition of a phage encoding a secreted
    phospholipase A2. Proc Natl Acad Sci U S A 103, 16009-
    16014. Epub 12006 Oct 16016.

    98.Smith, J.L. (2004). The physiological role of ferritin-
    like compounds in bacteria. Crit Rev Microbiol 30, 173-
    185.

    99.Steer, A.C., Law, I., Matatolu, L., Beall, B.W., and
    Carapetis, J.R. (2009). Global emm type distribution of
    group A streptococci: systematic review and
    implications for vaccine development. Lancet Infect Dis
    9, 611-616.

    100.Stevens, D.L. (1999). The flesh-eating bacterium:
    what's next? J Infect Dis 179, S366-374.

    101.Stevens, D.L., Gibbons, A.E., Bergstrom, R., and Winn,
    V. (1988). The Eagle effect revisited: efficacy of
    clindamycin, erythromycin, and penicillin in the
    treatment of streptococcal myositis. J Infect Dis 158,
    23-28.

    102.Stone, J.R. (2004). An assessment of proposed
    mechanisms for sensing hydrogen peroxide in
    mammalian systems. Arch Biochem Biophys 422, 119-124.

    103.Sun, Q.Y., Ding, L.W., He, L.L., Sun, Y.B., Shao,
    J.L., Luo, M., and Xu, Z.F. (2009). Culture of
    Escherichia coli in SOC medium improves the cloning
    efficiency of toxic protein genes. Anal Biochem 394,
    144-146.

    104.Tamayo, E., Montes, M., Garcia-Medina, G., Garcia-
    Arenzana, J.M., and Perez-Trallero, E. (2010). Spread
    of a highly mucoid Streptococcus pyogenes emm3/ST15
    clone. BMC Infect Dis 10, 233.

    105.Traore, D.A., El Ghazouani, A., Ilango, S., Dupuy, J.,
    Jacquamet, L., Ferrer, J.L., Caux-Thang, C., Duarte,
    V., and Latour, J.M. (2006). Crystal structure of the
    apo-PerR-Zn protein from Bacillus subtilis. Mol
    Microbiol 61, 1211-1219.

    106.Traore, D.A., El Ghazouani, A., Jacquamet, L., Borel,
    F., Ferrer, J.L., Lascoux, D., Ravanat,
    J.L., Jaquinod, M., Blondin, G., Caux-Thang, C., et
    al. (2009). Structural and functional characterization
    of 2-oxo-histidine in oxidized PerR protein. Nat Chem
    Biol 5, 53-59. Epub 2008 Dec 2014.

    107.Tsou, C.C., Chiang-Ni, C., Lin, Y.S., Chuang, W.J.,
    Lin, M.T., Liu, C.C., and Wu, J.J. (2008). An iron-
    binding protein, Dpr, decreases hydrogen peroxide
    stress and protects Streptococcus pyogenes against
    multiple stresses. Infect Immun 76, 4038-4045.

    108.Tsou, C.C., Chiang-Ni, C., Lin, Y.S., Chuang, W.J.,
    Lin, M.T., Liu, C.C., and Wu, J.J. (2010). Oxidative
    stress and metal ions regulate a ferritin-like gene,
    dpr, in Streptococcus pyogenes. Int J Med Microbiol
    300, 259-264. Epub 2009 Oct 2029.

    109.Varghese, S., Wu, A., Park, S., Imlay, K.R., and
    Imlay, J.A. (2007). Submicromolar hydrogen
    peroxide disrupts the ability of Fur protein to
    control free-iron levels in Escherichia coli. Mol
    Microbiol 64, 822-830.

    110.Volkov, V.V., and Svergun, D.I. Uniqueness of ab
    initio shape determination in small-angle
    scattering.

    111.Wang, M., Su, X., Li, Y., Jun, Z., and Li, T. (2010).
    Cloning and expression of the Mn-SOD gene from
    Phascolosoma esculenta. Fish Shellfish Immunol 29, 759-
    764. Epub 2010 Jul 2021.

    112.Weiss, K.A., and Laverdiere, M. (1997). Group A
    Streptococcus invasive infections: a review.
    Can J Surg 40, 18-25.

    113.Zheng, M., Aslund, F., and Storz, G. (1998).
    Activation of the OxyR transcription factor by
    reversible disulfide bond formation. Science 279, 1718-
    1721.

    下載圖示 校內:2013-08-22公開
    校外:2013-08-22公開
    QR CODE