| 研究生: |
林柏凡 Lin, Po-Fan |
|---|---|
| 論文名稱: |
In摻雜及製程條件對ZnO奈米板生長及光學性質影響之研究 Effects of In doping and processing parameters on the growth and optical properties of ZnO nanodisks |
| 指導教授: |
林文台
Lin, Wen-Tai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 氧化鋅 、氧化銦 、奈米 、奈米板 、製程條件 、光學性質 |
| 外文關鍵詞: | nanodisk, nano, In2O3, ZnO |
| 相關次數: | 點閱:47 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
本研究將氧化鋅粉末摻雜氧化銦,並以熱碳還原法在900-1000℃通入氬氣製作銦摻雜的氧化鋅奈米板,並研究冷卻速率、氬氣中的氧分壓以及(氧化鋅,氧化銦)/碳粉混合粉末中碳粉濃度等製程參數的影響。在900-970℃可發現由六個{10-10}面圍成的六邊形氧化鋅奈米板,以及由六個{10-10}與六個{11-20}面所包圍的十二邊形氧化鋅奈米板。在1000℃則僅有六邊形的氧化鋅奈米板存在。生成溫度及銦的摻雜是影響氧化鋅奈米結構外型的主要因素。在氬氣中生長並空冷的氧化鋅奈米板,由於氧空缺及銦摻雜所造成的缺陷,導致光學分析中的綠光強度增加。爐冷製程使得氧化鋅奈米板中的氧空缺能在緩慢降溫過程達到室溫的氧空缺平衡濃度,因此比空冷製程的奈米板具有較少的氧空缺,而有較高的紫外光/綠光相對強度。然而爐冷後的氧化鋅奈米板由於生成非晶質,導致紫外光絕對強度下降。在氧化鋅奈米板生長及爐冷中,於氬氣中添加0.5-10%的氧濃度,能顯著改善紫外光絕對強度以及紫外光/綠光的相對強度。這是由於通氧後減少氧空缺,奈米板尺寸較大,及促進氧化鋅奈米板的生長。當氧濃度高於25%則無氧化鋅奈米板生長。紫外光/綠光的相對強度在氧濃度0.5-1%逐漸上升,在2-10%則漸差。這是由於在氧化鋅奈米板生長過程的氬氣中添加氧能減少氧空缺,然而過量的氧濃度則會造成鋅空缺使綠光增強。在(氧化鋅,氧化銦)/碳粉的混合粉末中,過高的碳粉濃度會降低紫外光/綠光相對強度,這是由於過多的碳粉會使氧化鋅奈米板尺寸減小,並在氧化鋅奈米板中形成較多的CO2。
Abstract
The growth and optical properties of In-doped ZnO nanodisks grown via carbothermal reduction of ZnO/In2O3 powders at a temperature of 900-1000℃ in flowing Ar as functions of cooling rate, oxygen partical pressure into the Ar flow, and carbon concentration in the (ZnO,In2O3)/carbon powders were studied. The hexagonal ZnO nanodisks enclosed by {10-10} facets and twelve-sided ones enclosed by {10-10} and {11-20} facets were grown at a temperature of 900-970℃. At 1000℃ only hexagonal nanodisks were formed. The growth temperature and In doping act as important roles in determining the morphology of ZnO nanostructures. For ZnO nanodisks grown in Ar and then subjected to air cooling green emission was enhanced due to the oxygen vacancies and defects induced by In doping. Furnace cooling allowed the equilibrium concentration of oxygen vacancies at room temperature to be readily reached, resulting in the decrease of oxygen vacancies in the ZnO nanodisks as compared with the air-cooled samples, and thus increased the ultra-violet (UV)/green emission ratio. However, the intensity of UV emission was concurrently decreased because of the formation of amorphous zinc oxides in the samples. Upon growth and subsequent furnace cooling in the Ar/O2 flow with the O2 concentration in the range of 0.5-10% the UV intensity and UV/green ratio were significantly increased. The reasons can be attributed to the decrease of oxygen vacancies, the larger grain size, and enhanced growth of ZnO nanodisks. With the O2 concentration above 25% no ZnO nanodisks were grown. The UV/green ratio first increased with the O2 concentration in the range of 0.5-1% and then decreased in the range of 2-10%. The introduction of O2 in the Ar flow during growth can decrease the oxygen vacancies in the ZnO nanodisks; however, higher O2 concentration can induce the formation of zinc vacancies and thus enhance green emission. Higher carbon concentration in the (ZnO,In2O3)/carbon powders decreased the UV/green ratio of ZnO nanodisks because of the reduction of grain size and the formation of more CO2.
1.R. Feynman, “Plenty of Room at the Bottom”, APS Annual Meeting (1959)
2.Sumio Iijima, Nature 354(7), 56, 1991.
3.馬振基主編, “奈米科技原理與應用”, 全華科技, 92年1月.
4.Zu Rong Dai, Zheng Wei Pan, Zhong L. Wang, Adv. Funct. Mater. 13(1), 9, (2003).
5.郭正次.朝春光編著, “奈米結構材料科學”, 全華科技, 93年4月, Chap.3.
6.H. J. Ko, Y. F. Chen, S. K. Hong, Appl. Phys. Lett. 77 23 3761, (2000).
7.W. Gao, Z. W. Li, R. Harikisun, S. –S. Chang, Mater. Lett. 57 1435 (2003).
8.C. Klingshirn, Phys. Status Solidi B 71 547 (1975).
9.F. S. Hickernell, dc triode sputtered zinc oxide surface elastic wave transducers, Journal of Applied Physics, 44, 1061, 1973.
10.Ki Hyun Yoon, Characteristics of ZnO thin films deposited onto Al / Si substrates by r. f magnetron sputtering" Thin Solid Films, 302, 116-121,1997
11.W. S. Law, High transparent and conducting ZnO films deposited by activated reactive evaporation, Journal of Electron Materials, 16, 141, 1987.
12.J. S. Kim, Characterization of high quality c-axis oriented ZnO Thin films grown by metal organic chemical vapor deposition using zinc acetate as source material, Thin Solid Films, 217, 133,1992.
13.T. Okamura, Preparation of n-ZnO / p-Si heterjunction by sol-gel process, Japanese Journal of Applied Physics, 31, L762-L764, 1992.
14.M. F. Ogawa, Preparation and electrical properties of undoped zinc oxide films by CVD, Journal of Material Science Letters, 9, 1351, 1990.
15.N. J. Ianno. Characterization of pulsed laser deposition zinc oxide, Thin Solid Films, 220, 92, 1992.
16.J. H. Morgan, The Preparation and Some Properties of Transparent Counducting ZnO for Use in Solar Cell, Canadan Journal of Physics, 60, 1387, 1982.
17.Y. Ohya, Microstructure of TiO2 and ZnO films fabricated by the sol-gel method, Journal of American Ceramic Society, 79, 825, 1996.
18.Y. Ohya, Preperation of transparent, electrically conducting ZnO film zinc acetate and alkoxide, Journal of Material Science, 29, 4099, 1996.
19.W. Tang, Aluminum-doped zinc oxide transparent conductors deposited by the sol-gel process, Thin Solid Films, 238, 83, 1994.
20.T. P. Alexander, Dielectric Properties of the sol-gel Derived ZnO thin films, IEEE, 585, 1996.
21.J. F. Wang et al., Science 293 (2001) 1313.
22.X. F. Duan et al., Nature 409 (2001) 66.
23.M. H. Huang et al., Science 292 (2001) 1897.
24.Y. Cui, C. M. Lieber, Science 291 (2001) 851.
25.Y. Cui et al., Science 293 (2001) 1289.
26.W. L. Hughes and Z. L. Wang, Appl. Phys. Lett. 86, 043106 (2005).
27.J. Q. Hu, Y. Bando, J. H. Zhan, Y. B. Li, Appl. Phys. Lett. 83 4414 (2003).
28.W. H. Suh, G. Y. Kim, Y. S. Jung, J. Appl. Phys. 97, 044305 (2005).
29.B.Z. Zhan, M.A. White, T.K. Sham, J.A. Pincock, R.J. Doucet, K.V. R. Rao, K.N. Robertson, and T.S. Cameron, J. Am. Chem. Soc. 125, 2195 (2003)
30.張立德, “奈米材料”, 五南出版社 (2002
31.W. Barthlott and C. Neinhuis, Planta 202, 1 (1997)
32.C. Neinhuis and W. Barthlott, Ann. Bot. 79, 667 (1997)
33.R. Eisberg and R. Resnick, “Quantum Physics of atoms, molecules, solids, nuclei, and particles”, 2nd ed., New York:Wiley, pp.199 (1985)
34.R. Kubo, J. Phys. Soc. Jpn.17, 975 (1962)
35.H. L. Hartnagel, A. K. Jagadish, "Semicounducting Transparent Thin Films", published by Institute of Physics Publication, P.17, (1995).
36.余樹楨 "晶體之結構與性質", 渤海堂文化事業有限公司. P.255.
37.West. Anthony R., "Basic Solid State Chemistry", P.37, (1998).
38.Wyckoff and Ralph W.G., “Crystal Structure”, Vol. 2, Chap. V, illus., P.2, 1960.
39.H. L. Hartnagel, A. K. Jagadish, "Semicounducting Transparent Thin Films", published by Institute of Physics Publication, Chap.3, (1995).
40.R. Wang, W. Sleight, R. Platzer and A. Gardner, "Nonstoichiometric Zinc Oxide and Indium-Doped Zinc Oxide: Electrical Conductivity and In-TDPAC Studied", J. Sol. St. Chem. 122, P.166, (1996).
41.R. Wang, W. Sleight and D. Cleary, "High Conductivity in Gallium-Doped Zinc Oxide poders", Chem. Mater. 8, P.433, (1996).
42.B. P. Zhang, N. T. Binh, K. Wakatsuki, Nanotechnol. 15 S382 (2004).
43.Shang-Hun Jeong, Bong-Soo Kim, and Byung-Teak Lee, Appl. Phys. Lett. 82, 16, 2625, (2003).
44.Jih-Jen Wu, Sai-Chang Liu, Adv. Mater. 14(3), 215, (2004).
45.Chunya Geng, Yang Jiang, Yuan Yao, Adv. Funct. Mater. 14(6), 589, (2004).
46.Jiangtao Hu, Teri Wang Odom, Acc. Chem. Res. 32, 435, (1999).
47.Peidong Yang, Haoquan Yan, Samuel Mao, Adv. Funct. Mater. 12(5), 323, (2002).
48.C. X. Xu and X. W. Sun, Appl. Phys. Lett. 85(17), P.3878, (2004).
49.Xian-Hua Zhang, Su-Yuan Xie, J. Phys. Chem. B 107, 10114, (2003).
50.J. Q. Hu, Q. Li, X. M. Meng, Chem. Mater. 15, 305, (2003).
51.Lionel Vayssieres, Karin Keis, Chem. Mater. 13(12), 4395, (2001).
52.Jae-Hong Lim, Dae-Kue Hwang, Appl. Phys. Lett. 85(25), 6191, (2004).
53.J. Zhong, S. Muthukumar, Appl. Phys. Lett. 83(16), 3401, (2003).
54.Jyh-Jier Ho, Chin-Ying Chen, J. Electrochem. Soc. 152(1), G57, (2005).
55.C. Xu, M. Kim, Appl. Phys. Lett. 86, 133107, (2005).
56.Jiansheng Jie, Guanzhong Wang, Chem. Phys. Lett. 387, P.466, (2004).
57.B. Min, J. S. Lee, J. Crys. Grow. 252, P.565, (2003).00086
58.Hidetoshi Saitoh, Yoshiaki Namioka, Jpn. J. Appl. Phys. Vol. 40, pp.6024, (2001).
59.Dae-Chul Park, Isao Sakaguchi, Appl. Surf. Sci. 203-204, 359, (2003).
60.Michael H. Huang, Yiying Wu, Adv. Mater. 13(2), P.133, (2001).
61.H. Y. Dang, J. Wang and S. S. Fan, Nanotech. 14, P.738, (2003).
62.Xiaochen Sun, Hongzhou Zhang, Solid State Commun. 129, P.803, (2004).
63.Hui Zhang, Deren Yang, Nanotech. 15, P.622, (2004).
64.Bin Liu and Hua Chun Zeng, Langmuir 2004, 20,4196.
65.Lin Guo, Yunliang Ji, J. Mater. Chem. 13, 754, (2003).
66.Y. J. Xing, Z. H. Xi, Solid State Commun. 129, P.671, (2004).
67.D. Li., Y. H. Leung, Appl. Phys. Lett. 85(9), P.1601, (2004).
68.R. S. Wagner, W. C. Ellis, Appl. Phys. Lett. 4, P.89, (1964).
69.Pu Xian Gao and Zhong L. Wang, J.Phys. Chem. B 2004, 108, 7534.
70.J. Q. Hu, Quan Li, Chem. Mater. 14, 1216, (2002).
71.Zheng Wei Pan, Zu Rong Dai, Zhong Lin Wang, Science Vol 291, P.1947, (2001).
72.Ying Dai, Yue Zhang, Zhong Lin Wang, Solid State Commun. 126, P.629, (2003).
73.Yujie Li, Liping You, Solid State Commun. 129, P.233, (2004).
74.R. A. Laudise, A. A. Ballman, J. Phys. Chem. 64(5)(1960) 688.
75.Wen-Jun Li, Er-Wei Shi, Wei-Zhuo Zhong, J. Crystal Growth, 203, P.186, (1999).
76.郭正次.朝春光編著, “奈米結構材料科學”, 全華科技, 93年4月, Chap.5.
77.汪建民, 材料分析 (中國材料科學學會, 新竹市, 民國87)
78.F. Li, Y. Ding, P Gao, X. Xin, and Z. L. Wang, Angew. Chem. Int. Ed 43, P.5238 (2004)
79.J. G. Wen, J. Y., Lao, D. Z. Wang, T. M. Kyaw, Y. L. Foo, and Z. F. Ren, Chem. Phys. Lett.,372, P.717 (2003)
80.K. Vanheusden, W.L. Warren, and Z. L. Wang, Adv. Funct. Mater. 13, 9(2003).
81.N. Boulares, K. Guergouri, R. Zouaghi, N. Tabet, A. Lusson, F. Sibieude, and C. Monty, Phys. Stat. Sol. (a)201, P.2319 (2004).
82.S. Y. Bae, H. C. Choi, C. W. Na, and J. Park, Appl. Phys. Lett. 86, 033102 (2005).
83.N. E. Hsu, W. K. Hung, and Y. F. Chen, J. Appl. Phys. 96, 4671 (2004).
84.X. Wang, C. J. Summers, and Z. L. Wang, Nano Lett. 3, 423 (2004).
85.W. M. Hlaing Oo and M. D. McCluskey, Appl. Phys. Lett. 86, 073111 (2005).
86.Robert E. Reed Hill‧Reza Abbaschian, 3rd Ed., PWS Publishing Company, Chap.7.
87.Cox, J. D., Wagman, D. D., and Medvedev, V. A., CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, 1989.
88.David R. Gaskell, Introduction to the Thermodynamics of Materials, 4th Ed. 2003, Taylor & Francis, P.359.
89.W. Gao, Z. W. Li, R. Harikisun, S. S. Chang, Mater. Lett. 57, 1435 (2003).
90.Huheey et al., Inorganic Chemistry, 4th Ed., 1993, Addison-Wesley, P.182~198.