| 研究生: |
沈昌永 Shen, Chang-Yung |
|---|---|
| 論文名稱: |
添加不同離子半徑的稀土元素對鈦酸鋇陶瓷顯微結構及介電性質之影響 Addition of different rare earth elements effect on the microstructure and dielectric properties of barium titanate ceramics |
| 指導教授: |
向性一
Hsiang, Hsing-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 鈦酸鋇陶瓷 、稀土元素 、顯微結構 、溫度電容曲線 、晶格參數 |
| 外文關鍵詞: | Barium titanate ceramics, rare earth elements, microstructure, temperature dependence of capacitance curve, cell parameter |
| 相關次數: | 點閱:141 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高溫型電容器X8R主要應用在汽車工業上以及工作環境溫度較高的設備中,而X8R電容器大部分使用稀土元素使其符合規格,但對於稀土元素對鈦酸鋇之性質影響並沒有完全了解,本研究藉由添加不同離子半徑之稀土元素,探討其對鈦酸鋇於電性、晶格參數與微結構之影響,同時亦探討改變稀土元素添加量之間的關係,藉由XRD、SEM、TEM與EPMA來探討微結構、晶格參數與界面反應之相互影響,由電性結果了解離子半徑較小的元素如:Yb會使居里溫度往高溫移動,離子半徑較大的元素如:La會使居里溫度往低溫移動。改變氧化鐿和氧化釔的配比,可發現氧化鐿含量較多時會有較佳的電容變化率,氧化釔含量較多時會有較高的介電常數。
The high temperature capacitors meeting the specification of X8R have been widely used in automotive applications and other high temperature working environments. For the most of the dielectric materials satisfying the X8R specification, the rare earth elements were used to flatten the temperature coefficient of capacitance curve of BaTiO3 ceramics. However, the detailed mechanism of the effect of rare earth elements on the dielectric properties of BaTiO3 has not been well understood. In this study, the effects of the rare earth ions with different ionic radius on the electric properties, cell parameters and microstructure of barium titanate ceramics were investigated. Furthermore, the relationships between the different additions of rare earth elements were discussed. The influences of microstructure, cell parameter and interface reaction were analyzed using XRD, SEM, TEM and EPMA. In the consequence, the addition of the ytterbium with small ionic radius into BaTiO3 shifted the Curie temperature to higher temperature due to the existence of tensile stress in the BaTiO3 ceramics. On the other hand, the addition of the rare earth ions with larger radius, such as lanthanum, into BaTiO3 shifted the Curie temperature to lower temperature, which may be due to the existence of compressive stress in the BaTiO3 ceramics. By changing the ratio of Yb and Y (Yb/Y) in the BaTiO3 ceramics, the composition with a higher ratio of Yb/Y resulted in smaller capacitance variation with temperature and the sample with a lower ratio of Yb/Y exhibited a higher dielectric constant.
1.J. Nowotny, “Electronic Ceramic Materials,” (1991).
2.邱碧秀,電子陶瓷材料, (1988)。
3.B. Jaffe,W.R. Cook and H. Jaffe, “Piezoelectric Ceramics,” Academic Press,London and New York (1971).
4.D. E. Rase and R. Roy, “Phase equilibria in the system BaO–TiO2,”J.Am.Ceram. Soc., Vol. 38, Issue 3, pp. 102-113 (1955).
5.R. K. Sharma, N. H. Chan and D. M. Smyth, “Solubility of TiO2 in BaTiO3,”J. Am. Ceram. Soc., Vol. 64, Issue 8, pp. 448-451 (1981).
6.Y. H. Hu, M. P. Harmer and D. M. Smyth, “Solubility of BaO in BaTiO3,” J. Am. Ceram. Soc., Vol. 8, Issue 7, pp. 372-376 (1985).
7.K.W. Kirby and B.A. Wechsler, “Phase relations in the barium titanate—titanium oxide system,” J. Am. Ceram. Soc., vol. 74, Issue 8, pp.1841-1847 (1991).
8.A.K. Maurice and R.C. Buchanan, “Preparation and stoichiometry effect on microstructure and properties of high purity BaTiO3,” Ferroelectrics,Vol. 74, pp. 61-75 (1987).
9.J.D. Murray, “Some causes and effects of phases other than tetragonal BaTiO3 in barium titanate,” Am. Ceram. Soc. Bull., Vol. 37, pp. 476-479 (1958).
10.W.D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to Ceramics,” 2nd Edition , John Wiley & Sons , New York (1976).
11.J.K. Lee and K.S. Hong, ”Role of Ba/Ti ratios in the dielectric properties of BaTiO3 ceramics,” J. Am. Ceram. Soc., Vol. 84, Issue 9, pp. 2001-2006 (2001).
12.K.Uchino, E. Sadanaga and T. Hirose, “Dependence of the crystal structure on particle size in barium titanate,” J. Am. Ceram. Soc., Vol. 72, Issue 8, pp. 1555-1558 (1989).
13.G. Arlt , D. Hennings , and G. With, “Dielectric properties of fine-grained barium titanate ceramics,” J. Appl. Phys., Vol. 58, pp. 1619-1625 (1985).
14.D. Hennings, Int. J. High Tech. Ceram. 3, 91-111, (1987).
15.M. W. Barsoum, “Fundamentals of Ceramics,” 513-543, (1997).
16.J. M. Herbert, “Ceramic Dielectrics and Capacitors,” New York, 202-218, (1985).
17.R. M. German, Liquid Phase Sintering, Plenum, New York, (1985).
18.J. N. Lin and T. B. Wu, “Effect of isovalent substitutions on lattice softening and transition character of BaTiO3 solid solutions,” J. Appl.Phys., Vol. 68, pp. 985-993 (1990).
19.H. Ihrig, “The phase stability of BaTiO3 as a function of doped 3d element: an experimental study,” J. Phys. C., Vol. 11, pp. 819-827 (1978).
20.D.Hennings and A.Schnell, “Diffuse ferroelectric phase transitions in Ba(Ti1-yZry)O3 ceramics,” J. Am. Ceram. Soc., Vol. 65, Issue 11, pp. 539-534 (1982).
21.J. H. Hwang and Y. H. Han, “Electrical properties of cerium-doped BaTiO3,” J. Am. Ceram. Soc., Vol. 84, Issue 8, pp. 1750-1754 (2001).
22.S. S. Yukie, N. A. Sato and T. Nomura , “Effect of Y-doping on resistance degradation of multilayer ceramic capacitors with Ni electrodes under the highly accelerated life test,” Jpn. J. Appl. Phys., Vol. 36, pp. 6016-6020 (1997).
23.S. B. Desu and E. C. Subbarao, “Effect of oxidation states of Mn on the phase stability of Mn-doped BaTiO3,” Ferroelectrics, Vol. 37, pp. 665-668 (1981).
24.D. F. K. Hennings, “Dielectric materials for sintering in reducing atmospheres,” J. Eur. Ceram. Soc., Vol. 21, pp. 1637-1642 (2001).
25.L. A. Xue , Y. Chen and R. J. Brook, “The influence of ionic radii on the incorporation of trivalent dopants into BaTiO3,” Mater. Sci. Engin., B1, pp. 193-201 (1988).
26.H. Kishi, N. Kohzu, Y. Mizuno, Y. Iguchi, J. Sugino, H. Ohsato and T. Okuda, “Effect of occupational sites of rare-earth elements on the microstructure in BaTiO3,”Jpn. J. Appl. Phys. Vol. 38, pp. 5452-5456 (1999).
27.Y. S. Jung, E. S. Na, U. Paik, J. Lee and J. Kim, “A study on the phase transition and characteristics of rare earth element doped BaTiO3,” Mater. Res. Bull., Vol. 37, pp.1633-1640 (2002).
28.E. Na, S. C. Choi and U. Paik, “Temperature dependence of dielectric properties of rare-earth element doped BaTiO3,” J. Ceram. Pro. Res., Vol. 4, No.4, pp.181-184 (2003).
29.S. Sato, Y. Fujikawa and T. Nomura, “Effect of rare-earth doping on the temperature-capacitance characteristics of MLCCs with Ni electrodes,” Dielectric Materials and Devices, pp.473-481 (2000).
30.Li Bo,Zhang Shuren, Zhong Chaowei, “ Doping effect of rare-earth in BaTiO3-MgO-R2O3 dielectrics,” Chinese. J. Mater. Re., Vol.22 ,No.4 (2008).
31.Du Min,Li Yanrong,Yuan Ying,Wang Sheng, Zhang Shuren,“ Study on microstructure and dielectric properties of rare-earth doped BaTiO3 ceramics,” Mater.Review.,Vol.21 ,5A (2007).
32.S. Wang, S. Zhang, X. Zhou, B. Li and Z. Chen, “Effect of sintering atmosphere on the microstructure and dielectric properties of Yb/Mg co-doped BaTiO3 ceramics,” Mater. Lett., Vol. 59, pp. 2457-2460 (2005).
33.Y. H. Song, J. H. Hwang and Y. H. Han, “Effect of Y2O3 on temperature stability of acceptor-doped BaTiO3,” Jpn. J. Appl. Phys., Vol. 44, No. 3, pp. 1310-1313 (2005).
34.Y. H. Song and Y. H. Han, “Effects of rare-earth oxides on temperature stability of acceptor-doped BaTiO3,” Jpn. J. Appl. Phys., Vol. 44, No. 8, pp. 6143-6147 (2005).
35.S. Zhang, S. Wang, X. Zhou, B. Li and Z. Chen, “Influence of 3d-elements on dielectric properties of BaTiO3 ceramics,” J. Mater. Sci.: Mater. electro., Vol. 16, pp. 669-672 (2005).
36.Tang Bin, Zhang shuren, Yuan Ying, Zhou Xiaohua, Liang Yishuai, “Influence of CaZrO3 on dielectric properties and microstructures of BaTiO3-based X8R ceramics,” Sci.China.Ser E.:Tech.Sci.,Vol.51,No9, pp. 1451-1456 (2008).
37.S. Wang, S. Zhang, X. Zhou, B. Li and
Z.Chen, “Investigation on dielectric properties of BaTiO3 co-doped with Ni and Nb,” Mater. Lett., Vol. 60, pp. 909-911 (2006).
38.Y Huang, L Gao, Y Hu, H Du, “Compositional effects on the properties of (1-x)BaTiO3- xBi0.5Na0.5TiO3 ceramics,” J Mater Sci: Mater Electron, (2007).
39.N. Setter and L. E. Cross, “The role of B-site cation disorder in diffuse phase transition behavior of perovskite ferroelectrics,” J. Appl. Phys., Vol. 51, No. 8, pp. 4356-4360 (1980).
40.G. A. Smolenskii, A. I. Agranovskaya and V. A. Isupov, “New ferroelectrics of complex compound,” Sov. Phys. Solid State., Vol. 1, pp. 907-908 (1959).
41.D. Hennings and R. Rosenstein, “Temperature-stable dielectrics based on chemically inhomogeneous BaTiO3,” J. Am. Ceram. Soc., Vol. 67, Issue 4, pp. 249-254 (1984).
42.H. Y. Lu, J. S. Bow and W. H. Deng, “Core-shell structure in ZrO2-modified BaTiO3 ceramics,” J. Am. Ceram. Soc., Vol. 73, Issue 12,pp. 3562-3568 (1990).
43.H. T. Martirena and J. C. Burfoot, “Grain-size effects on properties of some ferroelectric ceramics,” J. Phys., c7, pp. 3182-3192 (1974).
44.W. R. Beussem, L. E. Cross and A.K.Goswami, “Phenomenological theory of high permittivity in fine-grained barium titanate,” J. Am. Ceram. Soc., Vol. 49, Issue 1, pp. 33-36 (1966).
45.W. R. Beussem, L. E. Cross and A. K. Goswami, “Effect of two-dimensional pressure on the permittivity of fine and coarse-grains barium titanate,” J. Am. Ceram. Soc., Vol. 49, Issue 1, pp. 36-39 (1966).
46.P. Murugaraj, T. N. Kutty and M. S. Rao, “Diffuse phase transformation in neodymium-doped BaTiO3 ceramics,” J. Mater. Sci., Vol. 21, pp.3521-3527 (1986).
47.L. Benguigui and K. Bethe, “Diffused phase transition in BaxSr1-xTiO3 single crystal,” J. Appl. Phys., Vol. 47, No. 7, pp. 2787-2791 (1976).
48.D. Bard, E. Barbulescu and A. Barbulescu, “Diffuse phase transitions and ferroelectric-paraelectric diagram for the BaTiO3-SrTiO3 system,” Phys. Stat. Sol. (a), Vol. 74, pp. 79-83 (1982).
49.T. R. Armstrong, L. E. Morgens, A. K. Maurice and R. C. Buchanan, “Effects of zirconia on microstructure and dielectric properties of barium titanate ceramics,” J. Am. Ceram. Soc., Vol. 72, Issue 4, pp. 605-611 (1989).
50.H. Chazono, H. Kishi, “Sintering characteristics in BaTiO3-Nb2O5-Co3O4 ternary system: I, electrical properties and microstructure,” J. Am. Ceram. Soc., Vol. 82, Issue 10, pp. 2689-2697 (1999).
51.H. Chazono, H. Kishi, “Sintering characteristics in BaTiO3-Nb2O5-Co3O4 ternary system: II, stability of so-called ‘core-Shell’ Structure,” J. Am. Ceram. Soc., Vol. 83, Issue 1, pp. 101-106 (2000).
52.C.H.Kim, K.J.Park, Y.J.Yoon, M.H.Hong, J.O.Hong, K.H.Hur,“Role of yttrium and magnesium in the formation of core-shell structure of BaTiO3 grains in MLCC,” J.Eu.Ceram.Soc.,Vol.28.pp.1213-1219(2008).
53.T.R. Armstrong and R. C. Buchanan, “Influence of core-shell grains on the internal stress state and permittivity response of zirconia-modified barium titanate,” J. Am. Ceram. Soc., Vol. 73, Issue 5, pp. 1268-1273 (1990).
54.T. Takeuchi, K. Ado, T. Asai, H. Kageyama, Y. Saito, C. Masquelier and O. Nakamure, “Thickness of cubic surface phase on barium titanate single-crystalline grains,” J. Am. Ceram. Soc., Vol. 77, Issue 6, pp. 1665-1668 (1994).
55.G. Liu, X. Wang, Y. Lin, L. T. Li and C. W. Nan, “Growth kinetics of core-shell-structured grains and dielectric constant in rare-earth doped BaTiO3 ceramics,” J. Appl. Phys., Vol. 98, pp. 044105 (2005).
56.朱冠宇 組成變化對 X8R 鈦酸鋇介電陶瓷之介電性質及顯微結構的影 響之研究,國立成功大學資源工程研究所碩士論文,(2006)。
57.D. E. McCauley, M. S. H. Chu, and M. H. Megherhi, “PO2 dependence of the diffuse-phase transition in base metal capacitor dielectrics,” J. Am. Ceram. Soc., Vol. 89, Issue 1, pp. 193-201 (2006).
58.D. Hennings, “Barium Titanate Based Ceramics Materials for Dielectric Use,”Int. J. High Tech. Ceram., Vol. 3, pp. 91-111 (1987).
校內:2023-12-31公開