| 研究生: |
林宏俊 Lin, Hong-Jun |
|---|---|
| 論文名稱: |
以氣候風險架構評估都市高齡者熱風險與主觀熱經驗–以臺北市為例 Assessing Heat Risk and Subjective Heat Experiences among Urban Elderly by Applying the Climate Risk Framework: A Case Study of Taipei City |
| 指導教授: |
趙子元
Chao, Tzu-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 都市計劃學系 Department of Urban Planning |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 144 |
| 中文關鍵詞: | 氣候風險架構 、熱風險評估 、熱感知 、熱調適 、高齡者 |
| 外文關鍵詞: | Climate Risk Framework, Heat Risk Assessment, Thermal Perception, Heat Adaptation, Elderly Populations |
| 相關次數: | 點閱:53 下載:29 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著氣候變遷導致極端高溫事件頻率增加,高度都市化的發展使城市居民更容易暴露於熱環境中,尤其對於即將邁入超高齡社會的臺灣,城市中的高齡族群面臨更顯著的熱健康風險的影響。因此,如何客觀地評估高齡者可能面對的熱風險區域,以利提供政府採取適當的熱調適措施,並透過主觀問卷調查了解長者對熱感知及調適行為的選擇,成為重要的研究議題。熱風險地圖評估能確切的指認高風險區域,主觀問卷則能深入了解長者的實際需求與偏好,兩者結合可提供更完整與務實的規劃建議,提升長者健康福祉。
為此,本研究引用IPCC第六次評估報告的氣候風險框架,從危害、暴露、脆弱及應對四個構面,繪製都市高齡人口的熱風險地圖,分析風險的空間分布及其自相關特性。並針對識別出的高風險區域進行主觀熱經驗問卷調查,了解不同人口特徵對熱影響頻率、熱感知程度、調適行為及政府應對措施認知與偏好等,並整合一手問卷資料與二手數據資料,全面性地進行主客觀風險評估。
透過文獻回顧,本研究整理IPCC氣候風險架構的演變,並依此框架彙整過去相關研究使用的評估指標,提出本研究之指標選擇與風險定義,並以臺北市為實證地區,在村里尺度上識別出高風險區位及其環境特徵。此外,也針對主觀熱感知相關文獻,設計適合本研究脈絡的熱經驗問卷,並透過統計檢定及羅吉斯迴歸分析,來對風險地圖所辨視出高風險地區進行主觀評估的探討。
本研究以氣候風險框架之實證分析結果指認,臺北市的熱風險呈現明顯的空間聚集性,主要集中在舊市區內密集發展地帶,如萬華、中正及松山區,特別是忠貞里與富泰里兩處,屬於高風險且具有顯著的空間自相關性。主觀熱經驗問卷結果顯示,不同的人口特徵確實影響高齡者的主觀熱感知與調適行為,在女性、低教育程度、自覺健康狀況較差與經濟條件較弱之長者特徵為重要影響因素。男性則表現出較低的主觀影響感知與較少的調適行動,因而容易低估自身的健康狀況。此外,長者對於政府熱應對措施的認知中,綠色設施與遮蔭設施最易被理解與支持,反映設施可見性與生活連結性為高齡受訪者感受政策作為的重要依據,然而對於與熱相關的健康宣導認知則普遍不足,凸顯政府對長者的氣候教育資訊傳遞仍有提升的必要性。
本研究的貢獻在於結合主客觀評估方式,從熱風險地圖揭露了臺北市高齡人口的熱風險空間分布的差異性,而透過熱經驗問卷則進一步辨識了長者易受熱影響的特徵與需求,提出具體且可行的調適建議。研究結果亦指認,不同社經背景與建成環境條件下的主觀感知與客觀風險地圖評估間存在認知落差,未來在規劃資源分配及政策設計時,可參考此主客觀評估方式與結果進行分類治理,提供因地制宜的策略,以滿足高齡居民的需求與期待。
As climate change intensifies, extreme heat events have become more frequent and severe, increasing health risks—especially for older people in dense urban areas. In Taiwan, a rapidly aging society, older adults face greater vulnerability due to physical decline and limited access to resources. Identifying high-risk areas and understanding how the elderly perceive and respond to heat is essential for guiding effective government adaptation strategies.
This study applied the IPCC AR6 climate risk framework to assess elderly heat risks and subjective heat experiences in Taipei City. A heat risk map integrating hazard, exposure, vulnerability, and response dimensions identified areas of significant risk. Additionally, elderly residents in high-risk neighborhoods were surveyed about their heat perceptions, physical and psychological discomfort, daily disruptions, adaptive behaviors, and awareness of government mitigation measures.
The findings reveal clear spatial inequalities in elderly heat risk, with high-risk clusters concentrated in older urban districts such as Wanhua, Zhongzheng, and Songshan. Subjective data show that women, individuals with lower educational attainment, poorer self-rated health, and weaker economic status are more likely to report heat-related discomfort and adopt passive coping strategies. Notably, male respondents tended to report lower levels of perceived heat impact and adaptive behavior, possibly due to cultural norms around masculinity. While green and shading infrastructure were widely recognized and supported, knowledge of government-led health education and heat risk communication remained low among respondents, signaling gaps in public climate risk literacy.
一、 中文文獻
(一) 期刊文獻
林于凱、吳祐誠、黃鈴雅、林嘉明、吳聰能、周昌弘、宋鴻樟、王玉純(2011)。極端氣溫對臺灣都會區65歲以上族群心肺疾病死亡之風險趨勢分析。臺灣公共衛生雜誌, 30(3), 277–289。https://doi.org/10.6288/TJPH2011-30-03-08
賴昂廷、林益卿、楊鈺雯、吳美鳳(2012)。氣候變遷與人類健康。內科學誌, 23(5), 343–350。https://doi.org/10.6314/JIMT.2012.23(5).05
陳怡伶、黎德星(2010)。新自由主義化、國家與住宅市場:臺灣國宅政策的演變。地理學報(59), 105–131。https://doi.org/10.6161/jgs.2010.59.06
陳映融、吳治達、潘文驥、陳穆貞、龍世俊、蘇慧貞、張坤城(2016)。老年人口自殺與熱島效應之空間關聯分析。臺灣公共衛生雜誌, 35(4), 406–417。https://doi.org/10.6288/TJPH201635104089
石婉瑜、Leslie Mabon(2018)。臺北盆地的熱環境特徵與都市綠色基盤的影響。都市與計劃, 45(4), 283–300。https://doi.org/10.6128/CP.201812_45(4).0002
(二) 專書論著
許晃雄、王嘉琪、陳正達、李明旭、詹士樑(2024)。國家氣候變遷科學報告2024:現象、衝擊與調適(許晃雄、李明旭 主編)。國家科學及技術委員會與環境部聯合出版。
臺北市都市發展局(2024年11月12日)。臺北市開發基地體感降溫專案細部計畫書。檢自:https://udd.gov.taipei/assets/bdQnyxayykv3kMGoVS8GrA/attachs/%E7%B4%B0%E9%83%A8%E8%A8%88%E7%95%AB%E6%9B%B8.pdf
(三) 學位論文
劉采芸(2015)。都市熱壓力風險與熱相關疾病就醫之關聯性〔碩士論文,國立臺北大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0023-1005201615092655
李宜臻(2018)。都市街道熱風險地圖建置之研究:以台南市中心為例〔碩士論文,國立臺灣大學〕。https://doi.org/10.6342/NTU201803707
王姿雅(2023)。探討環境與地理因子對高齡化農村熱環境的影響:以雲林縣為例〔碩士論文,國立臺灣大學〕。https://doi.org/10.6342/NTU202303431
(四) 電子資源
杜素豪、廖培珊(2019)。熱浪衝擊下的社會脆弱度與調適力:個人與社區因素的探討(101年電訪追蹤/103年電訪)(C00288)【原始數據】。中央研究院人文社會科學研究中心調查研究專題中心學術調查研究資料庫。https://doi.org/10.6141/TW-SRDA-C00288-1
二、 英文文獻
(一) 期刊文獻
Abrahamson, V., Wolf, J., Lorenzoni, I., Fenn, B., Kovats, S., Wilkinson, P., Adger, W. N., & Raine, R. (2009). Perceptions of heatwave risks to health: Interview-based study of older people in London and Norwich, UK. Journal of Public Health, 31(1), 119–126. https://doi.org/10.1093/pubmed/fdn102
Andrews, T. M., Simpson, N. P., Mach, K. J., & Trisos, C. H. (2023). Risk from responses to a changing climate. Climate Risk Management, 39, 100487. https://doi.org/10.1016/j.crm.2023.100487
Arifwidodo, S. D., & Chandrasiri, O. (2020). Urban heat stress and human health in Bangkok, Thailand. Environmental Research, 185, 109398. https://doi.org/10.1016/j.envres.2020.109398
Ayanlade, A., Smucker, T. A., Nyasimi, M., Sterly, H., Weldemariam, L. F., & Simpson, N. P. (2023). Complex climate change risk and emerging directions for vulnerability research in Africa. Climate Risk Management, 40, 100497. https://doi.org/10.1016/j.crm.2023.100497
Ballester, J., Quijal-Zamorano, M., Méndez Turrubiates, R. F., Pegenaute, F., Herrmann, F. R., Robine, J. M., Basagaña, X., Tonne, C., Antó, J. M., & Achebak, H. (2023). Heat-related mortality in Europe during the summer of 2022. Nature Medicine, 29(7), 1857–1866. https://doi.org/10.1038/s41591-023-02419-z
Beckmann, S. K., & Hiete, M. (2020). Predictors associated with health-related heat risk perception of urban citizens in Germany. International Journal of Environmental Research and Public Health, 17(3), 874. https://doi.org/10.3390/ijerph17030874
Berger, T., Chundeli, F. A., Pandey, R. U., Jain, M., Tarafdar, A. K., & Ramamurthy, A. (2022). Low-income residents' strategies to cope with urban heat. Land Use Policy, 119, 106192. https://doi.org/10.1016/j.landusepol.2022.106192
Brown, S. J. (2020). Future changes in heatwave severity, duration and frequency due to climate change for the most populous cities. Weather and Climate Extremes, 30, 100278. https://doi.org/10.1016/j.wace.2020.100278
Buzan, J. R., & Huber, M. (2020). Moist heat stress on a hotter Earth. Annual Review of Earth and Planetary Sciences, 48(1), 623–655. https://doi.org/10.1146/annurev-earth-053018-060100
Canever, J. B., Cândido, L. M., Wagner, K. J. P., Danielewicz, A. L., Cimarosti, H. I., & de Avelar, N. C. P. (2024). Association between sleep problems and self-perception of health among community-dwelling older adults: Data from the 2019 national health survey. Aging and Health Research, 4(2), 100192. https://doi.org/10.1016/j.ahr.2024.100192
Charkoudian, N., & Stachenfeld, N. (2016). Sex hormone effects on autonomic mechanisms of thermoregulation in humans. Autonomic Neuroscience, 196, 75–80. https://doi.org/10.1016/j.autneu.2015.11.004
Chen, C. C., Wang, Y. R., Wang, Y. C., Lin, S. L., Chen, C. T., Lu, M. M., & Guo, Y. L. L. (2021). Projection of future temperature extremes, related mortality, and adaptation due to climate and population changes in Taiwan. Science of The Total Environment, 760, 143373. https://doi.org/10.1016/j.scitotenv.2020.143373
Chen, T.-L., Lin, H., & Chiu, Y.-H. (2022). Heat vulnerability and extreme heat risk at the metropolitan scale: A case study of Taipei metropolitan area, Taiwan. Urban Climate, 41, 101054. https://doi.org/10.1016/j.uclim.2021.101054
Chen, Y., Wu, J., Yu, K., & Wang, D. (2020). Evaluating the impact of the building density and height on the block surface temperature. Building and Environment, 168, 106493. https://doi.org/10.1016/j.buildenv.2019.106493
Cheng, J., Xu, Z., Bambrick, H., Su, H., Tong, S., & Hu, W. (2018). Heatwave and elderly mortality: An evaluation of death burden and health costs considering short-term mortality displacement. Environment International, 115, 334–342. https://doi.org/10.1016/j.envint.2018.03.041
Cheng, W., Li, D., Liu, Z., & Brown, R. D. (2021). Approaches for identifying heat-vulnerable populations and locations: A systematic review. Science of The Total Environment, 799, 149417. https://doi.org/10.1016/j.scitotenv.2021.149417
Chern, Y. R., Wu, C. D., Chen, M. J., Lung, C. S. C., Su, H. J., & Chang, K. C. (2016). Spatial correlation analysis of elderly suicides and urban heat island effects: An ecological study in Taipei, 2000–2008. Taiwan Journal of Public Health, 35(4), 406–417. https://doi.org/10.6288/TJPH201635104089
Clark, A., Grineski, S., Curtis, D. S., & Cheung, E. S. L. (2024). Identifying groups at-risk to extreme heat: Intersections of age, race/ethnicity, and socioeconomic status. Environment International, 191, 108988. https://doi.org/10.1016/j.envint.2024.108988
Cresswell, K. (2023). A Florida urban heat risk index: Assessing weighting and aggregation approaches. Urban Climate, 51, 101646. https://doi.org/10.1016/j.uclim.2023.101646
Dash, P., M., G. F., S., O. F., & Fischer, H. (2002). Land surface temperature and emissivity estimation from passive sensor data: Theory and practice-current trends. International Journal of Remote Sensing, 23(13), 2563–2594. https://doi.org/10.1080/01431160110115041
Deng, H., K. Liu, J. Feng, and Y. Xiong. 2024. “Tackling the Modifiable Areal Unit Problem: Enhancing Urban Sustainability Through Improved Land Surface Temperature and Its Influencing Factors Analysis.” Sustainable Cities and Society 114:105747. https://doi.org/10.1016/j.scs.2024.105747.
Dutta, K., Basu, D., & Agrawal, S. (2021). Synergetic interaction between spatial land cover dynamics and expanding urban heat islands. Environmental Monitoring and Assessment, 193(4), 184. https://doi.org/10.1007/s10661-021-08969-4
Dong, J., Peng, J., He, X., Corcoran, J., Qiu, S., & Wang, X. (2020). Heatwave-induced human health risk assessment in megacities based on heat stress-social vulnerability-human exposure framework. Landscape and Urban Planning, 203, 103907. https://doi.org/10.1016/j.landurbplan.2020.103907
Ellena, M., Breil, M., & Soriani, S. (2020). The heat-health nexus in the urban context: A systematic literature review exploring the socio-economic vulnerabilities and built environment characteristics. Urban Climate, 34, 100676. https://doi.org/10.1016/j.uclim.2020.100676
Ellena, M., Melis, G., Zengarini, N., Di Gangi, E., Ricciardi, G., Mercogliano, P., & Costa, G. (2023). Micro-scale UHI risk assessment on the heat-health nexus within cities by looking at socio-economic factors and built environment characteristics: The Turin case study (Italy). Urban Climate, 49, 101514. https://doi.org/10.1016/j.uclim.2023.101514
Estoque, R. C., Ishtiaque, A., Parajuli, J., Athukorala, D., Rabby, Y. W., & Ooba, M. (2023). Has the IPCC’s revised vulnerability concept been well adopted? Ambio, 52(2), 376–389. https://doi.org/10.1007/s13280-022-01806-z
Estoque, R. C., Ooba, M., Seposo, X. T., Togawa, T., Hijioka, Y., Takahashi, K., & Nakamura, S. (2020). Heat health risk assessment in Philippine cities using remotely sensed data and social-ecological indicators. Nature Communications, 11(1), 1581. https://doi.org/10.1038/s41467-020-15218-8
Eugenio Pappalardo, S., Zanetti, C., & Todeschi, V. (2023). Mapping urban heat islands and heat-related risk during heat waves from a climate justice perspective: A case study in the municipality of Padua (Italy) for inclusive adaptation policies. Landscape and Urban Planning, 238, 104831. https://doi.org/10.1016/j.landurbplan.2023.104831
Fan, P., Wan, G., Xu, L., Park, H., Xie, Y., Liu, Y., Yue, W., & Chen, J. (2018). Walkability in urban landscapes: A comparative study of four large cities in China. Landscape Ecology, 33(2), 323–340. https://doi.org/10.1007/s10980-017-0602-z
Foden, W. B., Young, B. E., Akçakaya, H. R., Garcia, R. A., Hoffmann, A. A., Stein, B. A., Thomas, C. D., Wheatley, C. J., Bickford, D., & Carr, J. A. (2019). Climate change vulnerability assessment of species. Wiley Interdisciplinary Reviews: Climate Change, 10(1), e551. https://doi.org/10.1002/wcc.551
Gamero-Salinas, J. C., Monge-Barrio, A., & Sánchez-Ostiz, A. (2020). Overheating risk assessment of different dwellings during the hottest season of a warm tropical climate. Building and Environment, 171, 106664. https://doi.org/10.1016/j.buildenv.2020.106664
Greenfield, A. M., Alba, B. K., Giersch, G. E. W., & Seeley, A. D. (2023). Sex differences in thermal sensitivity and perception: Implications for behavioral and autonomic thermoregulation. Physiology & Behavior, 263, 114126. https://doi.org/10.1016/j.physbeh.2023.114126
Grigorescu, I., Mocanu, I., Mitrică, B., Dumitraşcu, M., Dumitrică, C., & Dragotă, C.-S. (2021). Socio-economic and environmental vulnerability to heat-related phenomena in Bucharest metropolitan area. Environmental Research, 192, 110268. https://doi.org/10.1016/j.envres.2020.110268
Gu, X., Chen, P., & Fan, C. (2024). Socio-demographic inequalities in the impacts of extreme temperatures on population mobility. Journal of Transport Geography, 114, 103755. https://doi.org/10.1016/j.jtrangeo.2023.103755
Guergova, S., & Dufour, A. (2011). Thermal sensitivity in the elderly: A review. Ageing Research Reviews, 10(1), 80–92. https://doi.org/10.1016/j.arr.2010.04.009
Haraguchi, M., Toyota, T., Kikuchi, G., & Taniguchi, M. (2022). Cognitive biases affect adaptive behaviours to prevent heat-related illnesses: A survey of older adults in Kyoto, Japan. The Lancet Planetary Health, 6, S2.
Hass, A. L., Runkle, J. D., & Sugg, M. M. (2021). The driving influences of human perception to extreme heat: A scoping review. Environmental Research, 197, 111173. https://doi.org/10.1016/j.envres.2021.111173
Hassani, A., Jancewicz, B., Wrotek, M., Chwałczyk, F., & Castell, N. (2024). Understanding thermal comfort expectations in older adults: The role of long-term thermal history. Building and Environment, 263, 111900. https://doi.org/10.1016/j.buildenv.2024.111900
He, B.-J., Zhao, D., Dong, X., Xiong, K., Feng, C., Qi, Q., Darko, A., Sharifi, A., & Pathak, M. (2022). Perception, physiological and psychological impacts, adaptive awareness and knowledge, and climate justice under urban heat: A study in extremely hot-humid Chongqing, China. Sustainable Cities and Society, 79, 103685. https://doi.org/10.1016/j.scs.2022.103685
Hendel, M., Azos-Diaz, K., & Tremeac, B. (2017). Behavioral adaptation to heat-related health risks in cities. Energy and Buildings, 152, 823–829. https://doi.org/10.1016/j.enbuild.2016.11.063
Heng, S. L., & Chow, W. T. L. (2019). How ‘hot’ is too hot? Evaluating acceptable outdoor thermal comfort ranges in an equatorial urban park. International Journal of Biometeorology, 63(6), 801–816. https://doi.org/10.1007/s00484-019-01694-1
Hodes, G. E., Bangasser, D., Sotiropoulos, I., Kokras, N., & Dalla, C. (2024). Sex Differences in Stress Response: Classical Mechanisms and Beyond. Current Neuropharmacology, 22(3), 475–494. https://doi.org/10.2174/1570159X22666231005090134
Hua, J., Zhang, X., Ren, C., Shi, Y., & Lee, T.-C. (2021). Spatiotemporal assessment of extreme heat risk for high-density cities: A case study of Hong Kong from 2006 to 2016. Sustainable Cities and Society, 64, 102507. https://doi.org/10.1016/j.scs.2020.102507
Islam, M. R., Shahfahad, Talukdar, S., Rihan, M., & Rahman, A. (2024). Evaluating cooling effect of blue-green infrastructure on urban thermal environment in a metropolitan city: Using geospatial and machine learning techniques. Sustainable Cities and Society, 113, 105666. https://doi.org/10.1016/j.scs.2024.105666
Ji, Y., Feng, X., Zhao, H., & Xu, X. (2024). Study on the elderly's perception of microclimate and activity time in residential communities. Building and Environment, 266, 112125. https://doi.org/10.1016/j.buildenv.2024.112125
Jurgilevich, A., Räsänen, A., Groundstroem, F., & Juhola, S. (2017). A systematic review of dynamics in climate risk and vulnerability assessments. Environmental Research Letters, 12(1), 013002. https://doi.org/10.1088/1748-9326/aa5508
Kamruzzaman, M., Deilami, K., & Yigitcanlar, T. (2018). Investigating the urban heat island effect of transit oriented development in Brisbane. Journal of Transport Geography, 66, 116–124. https://doi.org/10.1016/j.jtrangeo.2017.11.016
Kenny, G. P., T. E. J., Shane, J. W., H. S. B., & O’Connor, F. K. (2024). Indoor overheating: A review of vulnerabilities, causes, and strategies to prevent adverse human health outcomes during extreme heat events. Temperature, 11(3), 203–246. https://doi.org/10.1080/23328940.2024.2361223
Kenney, W. L., Craighead, D. H., & Alexander, L. M. (2014). Heat waves, aging, and human cardiovascular health. Medicine and Science in Sports and Exercise, 46(10), 1891. https://doi.org/10.1249/MSS.0000000000000325
Kim, Y. M., Kim, S., Cheong, H. K., Ahn, B., & Choi, K. (2012). Effects of heat wave on body temperature and blood pressure in the poor and elderly. Environmental Health and Toxicology, 27. https://doi.org/10.5620/eht.2012.27.e2012013
Kim, Y. J., Park, C., Lee, D. K., & Park, T. Y. (2023). Connecting public health with urban planning: Allocating walkable cooling shelters considering older people. Landscape and Ecological Engineering, 19(2), 257–269. https://doi.org/10.1007/s11355-023-00543-z
Kim, Y.-o., Lee, W., Kim, H., & Cho, Y. (2020). Social isolation and vulnerability to heatwave-related mortality in the urban elderly population: A time-series multi-community study in Korea. Environment International, 142, 105868. https://doi.org/10.1016/j.envint.2020.105868
Kriebel-Gasparro, A. (2022). Climate Change: Effects on the Older Adult. JNP – The Journal for Nurse Practitioners, 18(4), 372–376. https://doi.org/10.1016/j.nurpra.2022.01.007
Kumar, B. P., Babu, K. R., Anusha, B. N., & Rajasekhar, M. (2022). Geo-environmental monitoring and assessment of land degradation and desertification in the semi-arid regions using Landsat 8 OLI / TIRS, LST, and NDVI approach. Environmental Challenges, 8, 100578. https://doi.org/10.1016/j.envc.2022.100578
Kumar, P., Debele, S. E., Khalili, S., Halios, C. H., Sahani, J., Aghamohammadi, N., & Jones, L. (2024). Urban heat mitigation by green and blue infrastructure: Drivers, effectiveness, and future needs. The Innovation, 5(2). https://doi.org/10.1016/j.xinn.2024.100588
Lehnert, E. A., Wilt, G., Flanagan, B., & Hallisey, E. (2020). Spatial exploration of the CDC's Social Vulnerability Index and heat-related health outcomes in Georgia. International Journal of Disaster Risk Reduction, 46, 101517. https://doi.org/10.1016/j.ijdrr.2020.101517
Li, Z.-L., Tang, R., Wan, Z., Bi, Y., Zhou, C., Tang, B., Yan, G., & Zhang, X. (2009). A review of current methodologies for regional evapotranspiration estimation from remotely sensed data. Sensors, 9(5), 3801–3853. https://doi.org/10.3390/s90503801
Li, F., Yigitcanlar, T., Nepal, M., Thanh, K. N., & Dur, F. (2022). Understanding Urban Heat Vulnerability Assessment Methods: A PRISMA Review. Energies, 15(19), 6998. https://doi.org/10.3390/en15196998
Li, J., Sun, R., Li, J., Ma, Y., Zhang, M., & Chen, L. (2024). Human extreme heat protective behaviours: The effects of physical risks, psychological perception, and public measures. Humanities and Social Sciences Communications, 11(1), 327. https://doi.org/10.1057/s41599-024-02790-3
Lo, A. Y., Jim, C. Y., Cheung, P. K., Wong, G. K. L., & Cheung, L. T. O. (2022). Space poverty driving heat stress vulnerability and the adaptive strategy of visiting urban parks. Cities, 127, 103740. https://doi.org/10.1016/j.cities.2022.103740
Luo, J., Li, B., Li, J., & Ren, Z. (2024). Examining the impact of Co-residence with a daughter-in-law on older adult health in China: Evidence from a frailty index-based study. SSM - Population Health, 26, 101649. https://doi.org/10.1016/j.ssmph.2024.101649
Mahler, H. I. M., Kulik, J. A., Gerrard, M., & Gibbons, F. X. (2010). Effects of upward and downward social comparison information on the efficacy of an appearance-based sun protection intervention: A randomized, controlled experiment. Journal of Behavioral Medicine, 33(6), 496–507. https://doi.org/10.1007/s10865-010-9279-3
Mayrhuber, E. A.-S., Dückers, M. L. A., Wallner, P., Arnberger, A., Allex, B., Wiesböck, L., … Kutalek, R. (2018). Vulnerability to heatwaves and implications for public health interventions – A scoping review. Environmental Research, 166, 42–54. https://doi.org/10.1016/j.envres.2018.05.021
Meade, R. D., Akerman, A. P., Notley, S. R., McGinn, R., Poirier, P., Gosselin, P., & Kenny, G. P. (2020). Physiological factors characterizing heat-vulnerable older adults: A narrative review. Environment International, 144, 105909. https://doi.org/10.1016/j.envint.2020.105909
Meade, R. D., Notley, S. R., & Kenny, G. P. (2019). Aging and human heat dissipation during exercise-heat stress: An update and future directions. Current Opinion in Physiology, 10, 219–225. https://doi.org/10.1016/j.cophys.2019.07.003
Mitsova, D., Besser, L. M., & Le, E. T. (2024). Summer heat, historic redlining, and neighborhood walking among older adults: 2017 National Household Travel Survey. Journal of Urban Health, 101(6), 1178–1187. https://doi.org/10.1007/s11524-024-00892-6
Mukhamedjanov, A., Kidokoro, T., Seta, F., & Yang, Y. (2021). Reshaping the concept of transit-oriented development in response to public space overheating near the transit nodes of Tokyo. Cities, 116, 103240. https://doi.org/10.1016/j.cities.2021.103240
Mukhopadhyay, B., & Weitz, C. A. (2022). Heat exposure, heat-related symptoms and coping strategies among elderly residents of urban slums and rural villages in West Bengal, India. International Journal of Environmental Research and Public Health, 19(19), 12446. https://doi.org/10.3390/ijerph191912446
Nazarian, N., & Lee, J. K. (2021). Personal assessment of urban heat exposure: a systematic review. Environmental Research Letters, 16(3), 033005. https://doi.org/10.1088/1748-9326/abd350
Ndlovu, N., & Chungag, B. N. (2024). Impact of heat stress on cardiovascular health outcomes of older adults: A mini review. Aging and Health Research, 4(2), 100189. https://doi.org/10.1016/j.ahr.2024.100189
Neutens, T. (2015). Accessibility, equity and health care: Review and research directions for transport geographers. Journal of Transport Geography, 43, 14–27. https://doi.org/10.1016/j.jtrangeo.2014.12.006
Niu, Y., Li, Z., Gao, Y., Liu, X., Xu, L., Vardoulakis, S., Yue, Y., Wang, J., & Liu, Q. (2021). A Systematic Review of the Development and Validation of the Heat Vulnerability Index: Major Factors, Methods, and Spatial Units. Current climate change reports, 7(3), 87–97. https://doi.org/10.1007/s40641-021-00173-3
Perini, K., & Magliocco, A. (2014). Effects of vegetation, urban density, building height, and atmospheric conditions on local temperatures and thermal comfort. Urban Forestry & Urban Greening, 13(3), 495–506. https://doi.org/10.1016/j.ufug.2014.03.003
Perkins-Kirkpatrick, S. E., & Lewis, S. C. (2020). Increasing trends in regional heatwaves. Nature Communications, 11(1), 3357. https://doi.org/10.1038/s41467-020-16970-7
Petrov, I., & Ryan, L. (2021). The landlord-tenant problem and energy efficiency in the residential rental market. Energy Policy, 157, 112458. https://doi.org/10.1016/j.enpol.2021.112458
Rehman, S. U., Javed, A. R., Khan, M. U., Nazar Awan, M., Farukh, A., & Hussien, A. (2022). PersonalisedComfort: A personalised thermal comfort model to predict thermal sensation votes for smart building residents. Enterprise Information Systems, 16(7), 1852316. https://doi.org/10.1080/17517575.2020.1852316
Rhoades, J. L., Gruber, J. S., & Horton, B. (2018). Developing an in-depth understanding of elderly adults’ vulnerability to climate change. The Gerontologist, 58(3), 567–577. https://doi.org/10.1093/geront/gnw167
RICCò, M., Razio, B., Poletti, L., Panato, C., Balzarini, F., Mezzoiuso, A. G., & Vezzosi, L. (2020). Risk perception of heat related disorders on the workplaces: a survey among health and safety representatives from the autonomous province of Trento, Northeastern Italy. Journal of preventive medicine and hygiene, 61(1), E48–E59. https://doi.org/10.15167/2421-4248/jpmh2020.61.1.727
Sandholz, S., Sett, D., Greco, A., Wannewitz, M., & Garschagen, M. (2021). Rethinking urban heat stress: Assessing risk and adaptation options across socioeconomic groups in Bonn, Germany. Urban Climate, 37, 100857. https://doi.org/10.1016/j.uclim.2021.100857
Seebauer, S., Friesenecker, M., Thaler, T., Schneider, A. E., & Schwarzinger, S. (2024). Feeling hot is being hot? Comparing the mapping and the surveying paradigm for urban heat vulnerability in Vienna. Science of The Total Environment, 945, 173952. https://doi.org/10.1016/j.scitotenv.2024.173952
Seong, K., Jiao, J., & Mandalapu, A. (2022). Evaluating the effects of heat vulnerability on heat-related emergency medical service incidents: Lessons from Austin, Texas. Environment and Planning B, 50(3), 776–795. https://doi.org/10.1177/23998083221129618
Sharma, J., & Ravindranath, N. H. (2019). Applying IPCC 2014 framework for hazard-specific vulnerability assessment under climate change. Environmental Research Communications, 1(5), 051004. https://doi.org/10.1088/2515-7620/ab24ed
Sherman, J. D., MacNeill, A. J., Biddinger, P. D., Ergun, O., Salas, R. N., & Eckelman, M. J. (2023). Sustainable and resilient health care in the face of a changing climate. Annual Review of Public Health, 44, 255–277. https://doi.org/10.1146/annurev-publhealth-071421-051937
Shih, W.-Y., Lung, S.-C. C., & Hu, S.-C. (2022). Perceived heat impacts and adaptive behaviours in different socio-demographic groups in the subtropics. International Journal of Disaster Risk Reduction, 71, 102799. https://doi.org/10.1016/j.ijdrr.2022.102799
Simpson, N. P., Mach, K. J., Constable, A., Hess, J., Hogarth, R., Howden, M., … Trisos, C. H. (2021). A framework for complex climate change risk assessment. One Earth, 4(4), 489–501. https://doi.org/10.1016/j.oneear.2021.03.005
Simpson, N. P., Williams, P. A., Mach, K. J., Berrang-Ford, L., Biesbroek, R., Haasnoot, M., … Joe, E. T. (2023). Adaptation to compound climate risks: A systematic global stocktake. iScience, 26(2). https://doi.org/10.2139/ssrn.4205750
Singh, C., Ramesh, A., Hagenlocher, M., Shekhar, H., Siemons, A. S. S., Okunola, O. H., & Werners, S. E. (2024). Applying recent advances in climate adaptation research to urban heat risk management. Wiley Interdisciplinary Reviews: Climate Change. https://doi.org/10.1002/wcc.901
Sire, T., Carbonneau, N., Lemieux, S., & Carbonneau, É. (2025). Associations between intuitive eating, overall diet quality, and physical health indicators: Results of the PREDISE study. Appetite, 207, 107904. https://doi.org/10.1016/j.appet.2025.107904
Smith, D. T., Mouzon, D. M., & Elliott, M. (2016). Reviewing the assumptions about men’s mental health: An exploration of the gender binary. American Journal of Men's Health, 12(1), 78–89. https://doi.org/10.1177/1557988316630953
Song, J., Huang, B., Kim, J. S., Wen, J., & Li, R. (2020). Fine-scale mapping of an evidence-based heat health risk index for high-density cities: Hong Kong as a case study. Science of The Total Environment, 718, 137226. https://doi.org/10.1016/j.scitotenv.2020.137226
Song, X., Jiang, L., Zhang, D., Wang, X., Ma, Y., Hu, Y., Tang, J., Li, X., Huang, W., & Meng, Y. (2021). Impact of short-term exposure to extreme temperatures on diabetes mellitus morbidity and mortality? A systematic review and meta-analysis. Environmental Science and Pollution Research, 28(41), 58035–58049. https://doi.org/10.1007/s11356-021-14568-0
Song, W., & Calautit, J. K. (2024). Inclusive comfort: A review of techniques for monitoring thermal comfort among individuals with the inability to provide accurate subjective feedback. Building and Environment, 111463. https://doi.org/10.1016/j.buildenv.2024.111463
Sützl, B. S., Strebel, D. A., Rubin, A., Wen, J., & Carmeliet, J. (2024). Urban morphology clustering analysis to identify heat-prone neighbourhoods in cities. Sustainable Cities and Society, 107, 105360. https://doi.org/10.1016/j.scs.2024.105360
Tahira, R., Samia, N., & Ayesha, M. (2024). Evaluating the societal impact of climate change on mental health: Heat-related stress, anxiety, and depression in vulnerable populations. Contemporary Issues in Social Sciences and Management Practices, 3(2), 151–164. https://doi.org/10.61503/cissmp.v3i2.169
Turrell, G. (1997). Determinants of gender differences in dietary behavior. Nutrition Research, 17(7), 1105–1120. https://doi.org/10.1016/S0271-5317(97)00082-1
Van Hoof, J., Schellen, L., Soebarto, V., Wong, J. K. W., & Kazak, J. K. (2017). Ten questions concerning thermal comfort and ageing. Building and Environment, 120, 123–133. https://doi.org/10.1016/j.buildenv.2017.05.008
van Hoof, J., Soebarto, V., Ayalon, L., Marston, H. R., Zander, K. K., Dikken, J., & Kazak, J. K. (2025). Ten questions concerning older people and a sustainable built environment. Building and Environment, 274, 112742. https://doi.org/10.1016/j.buildenv.2025.112742
VanderMolen, K., Kimutis, N., & Hatchett, B. J. (2022). Recommendations for increasing the reach and effectiveness of heat risk education and warning messaging. International Journal of Disaster Risk Reduction, 82, 103288. https://doi.org/10.1016/j.ijdrr.2022.103288
VanSomeren, E. J. (2000). More than a marker: Interaction between the circadian regulation of temperature and sleep, age-related changes, and treatment possibilities. Chronobiology International, 17(3), 313–354. https://doi.org/10.1081/CBI-100101050
Vellei, M., Pallubinsky, H., Khovalyg, D., Carter, S., & Chinazzo, G. (2025). Do women feel colder by nature? A systematic literature review and meta-analysis of sex differences in physiological and subjective thermal responses. Building and Environment, 277, 112936. https://doi.org/10.1016/j.buildenv.2025.112936
Vicedo-Cabrera, A. M., Scovronick, N., Sera, F., Royé, D., Schneider, R., Tobias, A., Astrom, C., Guo, Y., Honda, Y., & Hondula, D. (2021). The burden of heat-related mortality attributable to recent human-induced climate change. Nature Climate Change, 11(6), 492–500. https://doi.org/10.1038/s41558-021-01058-x
Voelkel, J., Hellman, D., Sakuma, R., & Shandas, V. (2018). Assessing vulnerability to urban heat: A study of disproportionate heat exposure and access to refuge by socio-demographic status in Portland, Oregon. International Journal of Environmental Research and Public Health, 15(4). https://doi.org/10.3390/ijerph15040640
Wang, S., Sun, Q. C., Huang, X., Tao, Y., Dong, C., Das, S., & Liu, Y. (2023). Health-integrated heat risk assessment in Australian cities. Environmental Impact Assessment Review, 102, 107176. https://doi.org/10.1016/j.eiar.2023.107176
Ward Jr, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236–244. https://doi.org/10.1080/01621459.1963.10500845
Wolf, J., Adger, W. N., Lorenzoni, I., Abrahamson, V., & Raine, R. (2010). Social capital, individual responses to heat waves and climate change adaptation: An empirical study of two UK cities. Global Environmental Change, 20(1), 44–52. https://doi.org/10.1016/j.gloenvcha.2009.09.004
Wu, Y., Liu, H., Li, B., Kosonen, R., Kong, D., Zhou, S., & Yao, R. (2019). Thermal adaptation of the elderly during summer in a hot humid area: Psychological, behavioral, and physiological responses. Energy and Buildings, 203, 109450. https://doi.org/10.1016/j.enbuild.2019.109450
Xiang, Y., Yuan, C., Cen, Q., Huang, C., Wu, C., Teng, M., & Zhou, Z. (2024). Heat risk assessment and response to green infrastructure based on local climate zones. Building and Environment, 248, 111040. https://doi.org/10.1016/j.buildenv.2023.111040
Xiong, K., & He, B.-J. (2022). Wintertime outdoor thermal sensations and comfort in cold-humid environments of Chongqing China. Sustainable Cities and Society, 87, 104203. https://doi.org/10.1016/j.scs.2022.104203
Xue, S., Massazza, A., Akhter-Khan, S. C., Wray, B., Husain, M. I., & Lawrance, E. L. (2024). Mental health and psychosocial interventions in the context of climate change: a scoping review. Mental Health Research, 3(1), 10. https://doi.org/10.1038/s44184-024-00054-1
Yanovich, R., Ketko, I., & Charkoudian, N. (2020). Sex differences in human thermoregulation: Relevance for 2020 and beyond. Physiology, 35(3), 177–184. https://doi.org/10.1152/physiol.00035.2019
Yao, Y., Lu, L., Guo, J., Zhang, S., Cheng, J., Tariq, A., Liang, D., Hu, Y., & Li, Q. (2024). Spatially explicit assessments of heat-related health risks: A literature review. Remote Sensing, 16(23). https://doi.org/10.3390/rs16234500
Yu, X., Guo, X., & Wu, Z. (2014). Land Surface Temperature Retrieval from Landsat 8 TIRS—Comparison between Radiative Transfer Equation-Based Method, Split Window Algorithm and Single Channel Method. Remote Sensing, 6(10), 9829-9852. https://doi.org/10.3390/rs6109829
Zander, K. K., & Garnett, S. T. (2020). The importance of climate to emigration intentions from a tropical city in Australia. Sustainable Cities and Society, 63, 102465. https://doi.org/10.1016/j.scs.2020.102465
Zeng, P., Sun, F., Shi, D., Liu, Y., Zhang, R., Tian, T., & Che, Y. (2022). Integrating anthropogenic heat emissions and cooling accessibility to explore environmental justice in heat-related health risks in Shanghai, China. Landscape and Urban Planning, 226, 104490. https://doi.org/10.1016/j.landurbplan.2022.104490
Zhang, Y., Lin, Z., Zheng, Z., Zhang, S., & Fang, Z. (2024). A review of investigation of the metabolic rate effects on human thermal comfort. Energy and Buildings, 315, 114300. https://doi.org/10.1016/j.enbuild.2024.114300
Zhu, W., & Yuan, C. (2023). Urban heat health risk assessment in Singapore to support resilient urban design — By integrating urban heat and the distribution of the elderly population. Cities, 132, 104103. https://doi.org/10.1016/j.cities.2022.104103
(二) 專書論著
Bartlett, F. C. (1995). Remembering: A study in experimental and social psychology. Cambridge University Press.
Begum, R. A., Lempert, R., Ali, E., Benjaminsen, T. A., Bernauer, T., Cramer, W., ... & Wester, P. (2022). Point of departure and key concepts. In: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 121–196). Cambridge University Press. https://doi.org/10.1017/9781009325844.003
Intergovernmental Panel on Climate, C. (2023). Climate Change 2022 – Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://doi.org/10.1017/9781009325844
IPCC. (2023). Annex II: Glossary [Möller, V., van Diemen, R., Matthews, J. B. R., Méndez, C., Semenov, S., Fuglestvedt, J. S., & Reisinger, A. (Eds.)]. In Climate Change 2022 – Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 2897–2930). Cambridge University Press. https://doi.org/10.1017/9781009325844.029