| 研究生: |
陳宥任 Chen, Yu-Jen |
|---|---|
| 論文名稱: |
開發以非共價鍵形式作用於細菌肽聚醣之化學分子 Developing peptide-based binders toward bacterial peptidoglycans |
| 指導教授: |
鄭偉杰
Cheng, Wei-Chieh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 細菌肽聚醣 、相互作用力 、噬菌體展示篩選 |
| 外文關鍵詞: | peptidoglycan, binding affinity, phage display |
| 相關次數: | 點閱:63 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
細菌細胞壁是細菌的重要結構,其中肽聚醣是細菌細胞壁主要的構成單位。其中Lipid II是肽聚醣的生物合成中最小之生物分子,同時也是天然物抗生素之作用標靶,至少四種不同類別之天然物抗生素以Lipid II為作用標靶,如: 萬古黴素(vancomycin)、替考拉寧(teicoplanin)、雷莫拉寧(ramoplanin)和乳鏈菌肽(nisin)。我們因此根據Lipid II及肽聚醣之結構,設計了三種分子探針,包括: 五肽(pentapeptide),雙醣(GlcNAc-MurNAc-oligopeptide -monophosphate)及核苷酸(Park’s nucleotide)作為主骨架,以用於噬菌體展示篩選(phage display screening),以期得到相對應之高親和力胜肽小分子。
這三種分子探針分別固定於磁珠上,以方便篩選之操作。經由三輪放大篩選,並利用高通量定序(high-throughput sequencing)得到有高度辨識分子探針能力之胜肽小分子。
最後,我們使用生物薄膜干涉技術(biolayer interferometry)來檢測有潛力之胜肽小分子與分子探針(核苷酸、雙醣)之相互作用力。實驗結果顯示胜肽小分子(C7CP2)與核苷酸有較佳之相互作用力,且略低於天然物萬古黴素與核苷之相互作用力。胜肽小分子(C7CP3’及C7CP6’)則與雙醣有較佳之相互作用力。同時,我們應用NMR實驗尋找胜肽小分子(C7CP2)與核苷酸相互作用之原子基團位置。期待此結果能幫助我們進一步修飾及改良胜肽小分子,以期增強有潛力之胜肽小分子與肽聚醣之相互作用力。
Peptidoglycan (PGN) is a huge biomolecule present in bacterial cell wall, which plays an essential role for bacteria growth and survival. Lipid II is the basic biomolecule in the biosynthesis of peptidoglycan, and interestingly, it is also a target of naturally occurring antibiotic, such as the vancomycin, teicoplanin, ramoplanin, and lantibiotic nisin.
Based on the structure of Lipid II and peptidoglycan, we designed three molecular probes, including pentapeptide, GlcNAc-MurNAc-oligopeptide- monophosphate and Park’s nucleotide as the main structure. Three molecular probes were applied in phage display screening to generate the low molecular weight peptides (M.W. < 1500 Da), which highly recognize with our desired molecular probes.
Three molecular probes were individually immobilized on the magnetic beads to facilitate phage display biopanning. After three rounds of screening and amplification, followed by high-throughput sequencing, with a high affinity to the molecular probes were found.
Next, our binding affinity study between the low molecular weight peptides and the molecular probes (GlcNAc-MurNAc- oligopeptide-monophosphate and Park’s nucleotide) was performed by biolayer interferometry (BLI). The results revealed that the low molecular weight peptide (C7CP2) has the better interactions with Park’s nucleotide and is slightly lower than the interactions between vancomycin and Park’s nucleotide. The low molecular weight peptides (C7CP3’ and C7CP6’) have the better interactions with GlcNAc-MurNAc-oligopeptide-monophosphate. Meanwhile, NMR experiments were applied to identify the interaction moieties and modes between the low molecular weight peptide (C7CP2) and Park’s nucleotide.
Our current finding and analytical methods might help further structural modifications to enhance the interactions between the potential low molecular weight peptides and peptidoglycans.
References
1. Donadio; Maffioli; Monciardini, et al. Antibiotic discovery in the twenty-first century: current trends and future perspectives J. Antibiot. 2010, 63, 423-430
2. Hamburger; Hoertz; Lee, et al. A crystal structure of a dimer of the antibiotic ramoplanin illustrates membrane positioning and a potential Lipid II docking interface Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 13759-13764
3. Martin; Breukink The expanding role of lipid II as a target for lantibiotics. Future Microbiol 2007, 2, 513-525
4. Liu; Ritter; Sadamoto, et al. Acceptor Specificity and Inhibition of the Bacterial Cell-Wall Glycosyltransferase MurG. ChemBioChem 2003, 4, 603-609
5. Christ; Wiedemann; Bakowsky, et al. The role of lipid II in membrane binding of and pore formation by nisin analyzed by two combined biosensor techniques. Biochim. Biophys. Acta. 2007, 1768, 694-704
6. Breukink; de Kruijff Lipid II as a target for antibiotics Nat Rev Drug Discov 2006, 5, 321-332
7. t Hart; Wood; Tehrani, et al. De novo identification of lipid II binding lipopeptides with antibacterial activity against vancomycin-resistant bacteria Chem Sci 2017, 8, 7991-7997
8. Vollmerhaus; Breukink; Heck Getting Closer to the Real Bacterial Cell Wall Target: Biomolecular Interactions of Water-Soluble Lipid II with Glycopeptide Antibiotics. Chem. Eur. J. 2003, 9, 1556-1565
9. Healy; Lessard; Roper Vancomycin resistance in enterococci: reprogramming of the D-Ala–D-Ala ligases in bacterial peptidoglycan biosynthesis Chem Biol 2000, 7, R109-R119
10. Walsh; Fisher; Park Bacterial resistance to vancomycin: A plasmid-borne resistance of enterococcal characterization of individual five genes and one missing hydrogen bond tell the story Chem Biol 1996, 3, 21-28
11. Corti; Cassani Synthesis and Characterization of D-Alanyl-D-Alanine- Agarose Applied Biochemistry and Biotechnology 1985, 11, 101-109
12. Chen; He; Wu Dynamic Selection of Novel Vancomycin N-Terminal Derivatives by Resin-bound Reversed D-Ala-D-Ala Journal of Combinatorial Chemistry 2008, 10, 914-922
13. Boger Vancomycin, teicoplanin, and ramoplanin: Synthetic and mechanistic studies Med. Res. Rev. 2001, 21, 356-381
14. Hu; Helm; Chen Ramoplanin Inhibits Bacterial Transglycosylases by Binding as a Dimer to Lipid II J Am Chem Soc 2003, 125, 8736-8737
15. Cudic; Kranz; Behenna Complexation of peptidoglycan intermediates by the lipoglycodepsipeptide antibiotic ramoplanin: Minimal structural requirements for intermolecular complexation and fibril formation Proceedings of the National Academy of Sciences of the United States of America 2002, 99, 7384-7389
16. Willey; van der Donk Lantibiotics: Peptides of diverse structure and function. Annu. Rev. Microbio. 2007, 61, 477-501
17. Hsu; Breukink; Tischenko, et al. The nisin-lipid II complex reveals a pyrophosphate cage that provides a blueprint for novel antibiotics. Nat. Struct. Mol. Biol. 2004, 11, 963-967
18. Mantovani; Hu; Russell Bovicin HC5, a bacteriocin from Streptococcus bovis HC5. Microbiology 2002, 148, 3347-3352
19. Paiva; Breukink; Mantovani Role of Lipid II and membrane thickness in the mechanism of action of the lantibiotic bovicin HC5. Antimicrob. Agents Chemother. 2011, 55, 5284-5293
20. Martins; Reis; Azevedo Phage Display Technology in Biomaterials Engineering: Progress and Opportunities for Applications in Regenerative Medicine ACS Chem Biol 2016, 11, 2962-2980
21. Y.; K.; F., et al. Use of phage display technology for the determination of the targets for small-molecule therapeutics Expert Opin. Drug Discov. 2010, 5, 361-389
22. Feng; Jin; Zhang, et al. Analysis of the resveratrol-binding protein using phage-displayed random peptide library Acta Biochim Biophys Sin (Shanghai) 2006, 38, 342-348
23. Dieltjens; Willems; Coppens, et al. Unravelling the antigenic landscape of the HIV-1 subtype A envelope of an individual with broad cross-neutralizing antibodies using phage display peptide libraries J Virol Methods 2010, 169, 95-102
24. Youn; Myung; Liav, et al. Production and characterization of peptide mimotopes of phenolic glycolipid-I of Mycobacterium leprae FEMS Immunol Med Microbiol 2004, 41, 51-57
25. Rowley; Scealy; Whisstock, et al. Prediction of the immunodominant epitope of the pyruvate dehydrogenase complex E2 in primary biliary cirrhosis using phage display J Immunol 2000, 164, 3413-3419
26. Dore; Morard; Vita, et al. Identi¢cation and location on syndecan-1 core protein of the epitopes of B-B2 and B-B4 monoclonal antibodies FEBS Lett. 1998, 426, 67–70
27. Birkenmeier; Osman; Kopperschläger, et al. Epitope mapping by screening of phage display libraries of a monoclonal antibody directed against the receptor binding domain of human α2-macroglobulin FEBS Letters 1997, 416, 193-196
28. Tiwari; Liu; Valyi-Nagy, et al. Anti-heparan sulfate peptides that block herpes simplex virus infection in vivo J Biol Chem 2011, 286, 25406-25415
29. Rajik; Jahanshiri; Omar, et al. Identification and characterisation of a novel anti-viral peptide against avian influenza virus H9N2 Virol J 2009, 6, 74
30. Lavi; Siman-Tov; Ankri EhMLBP is an essential constituent of the Entamoeba histolytica epigenetic machinery and a potential drug target Mol Microbiol 2008, 69, 55-66
31. Welch; VanDemark; Heroux, et al. Potent D-peptide inhibitors of HIV-1 entry Proc. Natl. Acad. Sci. USA 2007, 104, 16828–16833
32. Dharmasena; Jewell; Taylor Development of peptide mimics of a protective epitope of Vibrio cholerae Ogawa O-antigen and investigation of the structural basis of peptide mimicry J Biol Chem 2007, 282, 33805-33816
33. Ferrer; Harrison Peptide Ligands to Human Immunodeficiency Virus Type 1 gp120 Identified from Phage Display Libraries J. Virol. 1999, 73, 5795–5802
34. Schwemmer; Baumgartner; Faivre, et al. Peptide-mediated nanoengineering of inorganic particle surfaces: a general route toward surface functionalization via peptide adhesion domains J Am Chem Soc 2012, 134, 2385-2391
35. Sawada; Sawada; Matsuno, et al. A Peptide Motif Recognizing a Polymer Stereoregularity J. Amer. Chem. Soc. 2009, 131, 14434–14441
36. Ahmad; Dickerson; Cai, et al. Rapid Bioenabled Formation of Ferroelectric BaTiO3 at Room Temperature from an Aqueous Salt Solution at Near Neutral pH J. Am. Chem. Soc. 2008, 130, 4–5
37. Whaley; English; Hu, et al. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly Nature 2000, 405, 665-668
38. Qi; O'Brien; Yang A recombinant triblock protein polymer with dispersant and binding properties for digital printing Biopolymers 2008, 90, 28-36
39. Zhao; Shen; Zhou, et al. Selecting peptide ligands of microcystin-LR from phage displayed random libraries Environ Int 2005, 31, 535-541
40. Miura; Sasao; Kamihira, et al. Peptides binding to a Gb3 mimic selected from a phage library Biochim Biophys Acta 2004, 1673, 131-138
41. Pustowka; Dietz; Ferner, et al. Identification of peptide ligands for target RNA structures derived from the HIV-1 packaging signal psi by screening phage-displayed peptide libraries Chembiochem 2003, 4, 1093-1097
42. Rozinov; Nolan Evolution of peptides that modulate the spectral qualities of
bound, small-molecule fluorophores Chem. Biol. 1998, 5, 713–728
43. Sugimura; Hosono; Wada, et al. Screening for the preferred substrate sequence of transglutaminase using a phage-displayed peptide library: identification of peptide substrates for TGASE 2 and Factor XIIIA J Biol Chem 2006, 281, 17699-17706
44. T.; A.; M. Synthesis of derivatives of NK109, 7-OH benzo[c]phenanthridine alkaloid, and evaluation of their cytotoxicities and
reduction-resistant properties. Bioorg Med Chem Lett 2000, 10, 2321-2323
45. F.; K.; T. Anti-tumour activities of a new benzo[c]phenanthridine agent, 2,3-(methylenedioxy)-5-methyl-7-hydroxy-8-methoxybenzo[cjphenanthridinium hydrogensulphate dihydrate (NK109), against several drug-resistant human tumour cell lines Br. J. Cancer 1997, 76, 571-581
46. Morohashi; Yoshino; Yoshimori Identification of a drug target motif: An anti-tumor drug NK109
interacts with a PNxxxxP Biochemical Pharmacology 2005, 70, 37-46
47. M.; I.; V. Multidrug-resistance drug-binding peptides
generated by using a phage display library Eur. J. Biochem 1998, 251, 155-163
48. Y.; J.; G. Identification of hNopp140 as a Binding Partner for Doxorubicin with a Phage Display Cloning Method Chem Biol 2002, 9, 157-162
49. K.; K.; Y. Doxorubicin Binds to Un-phosphorylated Form of hNopp140 and Reduces Protein Kinase CK2-Dependent Phosphorylation of hNopp140 J Biochem Mol Biol 2006, 39, 774-781
50. J.; W.; J. Complexation of peptidoglycan intermediates by the lipoglycodepsipeptide antibiotic ramoplanin: Minimal structural requirements for intermolecular complexation and fibril formation J Mol Biol 1999, 285, 197-203
51. P.; M.; D. Display cloning: functional identification of natural product receptors using cDNA-phage display Chem Biol 1999, 6, 707-716
52. Y.; J.; G. Identification of hNopp140 as a Binding Partner for Doxorubicin with a Phage Display Cloning Method Chem Biol 2002, 9, 157-162
53. Yamazaki; Aoki; Ohta, et al. Synthesis of an immunosuppressant SQAG9 and determination of the binding peptide by T7 phage display Bioorg Med Chem Lett 2004, 14, 4343-4346
54. Shim; Lee; Park, et al. A new curcumin derivative, HBC, interferes with the cell cycle progression of colon cancer cells via antagonization of the Ca2+/calmodulin function Chem Biol 2004, 11, 1455-1463
55. Jayanna; Torchilin; Petrenko Liposomes targeted by fusion phage proteins Nanomedicine 2009, 5, 83-89
56. Van Dorst; Mehta; Rouah-Martin, et al. Phage display as a method for discovering cellular targets of small molecules Methods 2012, 58, 56-61
57. S.; C.; C. A New Synthetic Approach toward Bacterial Transglycosylase Substrates, Lipid II and Lipid IV Org. Lett. 2011, 13, 4600–4603
58. Heinis; Rutherford; Freund, et al. Phage-encoded combinatorial chemical libraries based on bicyclic peptides Nat Chem Biol 2009, 5, 502-507
59. Timmerman; Beld; Puijk, et al. Rapid and quantitative cyclization of multiple peptide loops onto synthetic scaffolds for structural mimicry of protein surfaces Chembiochem 2005, 6, 821-824
60. Munch; Engels; Muller, et al. Structural variations of the cell wall precursor lipid II and their influence on binding and activity of the lipoglycopeptide antibiotic oritavancin Antimicrob Agents Chemother 2015, 59, 772-781
61. L.; G.; C. Synthesis and Evaluation of a New Fluorescent Transglycosylase Substrate: Lipid II-Based Molecule Possessing a Dansyl-C20 Polyprenyl Moiety Org. Lett. 2010, 12, 1608-1611
62. Hesek; Lee; Zajicek, et al. Synthesis and NMR characterization of (Z,Z,Z,Z,E,E,omega)-heptaprenol J Am Chem Soc 2012, 134, 13881-13888
63. Chen; Kuan; Fu, et al. Rapid preparation of mycobacterium N-Glycolyl Lipid I and Lipid II derivatives: A biocatalytic approach. Chem. Eur. J. 2013, 19, 834-838
校內:2024-07-26公開